{"title":"智能和互联健康系统的网络建模和物联网——智能心脏健康监测和管理的案例研究","authors":"Hui Yang, Chen Kan, Alexander Krall, D. Finke","doi":"10.1080/24725579.2020.1741738","DOIUrl":null,"url":null,"abstract":"Abstract Heart disease is a leading cause of death in the US. Recent advances in the Internet of Things (IoT) provide a great opportunity to realize smart and connected health systems through IoT monitoring and sensor-based data analytics of cardiac disorders. However, big data arising from the large-scale IoT system pose a significant challenge for efficient and effective sensory information processing and decision making. Very little has been done to glean pertinent information about the disease-altered cardiac activity in the context of large-scale IoT network. In this study, we propose a parallel computing framework for multi-level network modeling and monitoring of cardiac dynamics to realize the potential of IoT-enabled smart health management. Specifically, dissimilarities among cardiac signals are firstly characterized among heartbeats for an individual patient, as well as among representative heartbeats for different patients. Then, a stochastic learning approach is developed to optimize the embedding of cardiac signals into a beat-to-beat network model, as well as a patient-to-patient network model. Further, we develop a parallel computing algorithm to improve the computational efficiency. Finally, a statistical process monitoring scheme is designed to harness network features for real-time monitoring and anomaly detection of cardiac activities. Experimental results show the proposed methodology has strong potential to realize a smart and interconnected system for cardiac health management in the context of large-scale IoT network.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"10 1","pages":"159 - 171"},"PeriodicalIF":1.5000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24725579.2020.1741738","citationCount":"16","resultStr":"{\"title\":\"Network modeling and Internet of things for smart and connected health systems—a case study for smart heart health monitoring and management\",\"authors\":\"Hui Yang, Chen Kan, Alexander Krall, D. Finke\",\"doi\":\"10.1080/24725579.2020.1741738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Heart disease is a leading cause of death in the US. Recent advances in the Internet of Things (IoT) provide a great opportunity to realize smart and connected health systems through IoT monitoring and sensor-based data analytics of cardiac disorders. However, big data arising from the large-scale IoT system pose a significant challenge for efficient and effective sensory information processing and decision making. Very little has been done to glean pertinent information about the disease-altered cardiac activity in the context of large-scale IoT network. In this study, we propose a parallel computing framework for multi-level network modeling and monitoring of cardiac dynamics to realize the potential of IoT-enabled smart health management. Specifically, dissimilarities among cardiac signals are firstly characterized among heartbeats for an individual patient, as well as among representative heartbeats for different patients. Then, a stochastic learning approach is developed to optimize the embedding of cardiac signals into a beat-to-beat network model, as well as a patient-to-patient network model. Further, we develop a parallel computing algorithm to improve the computational efficiency. Finally, a statistical process monitoring scheme is designed to harness network features for real-time monitoring and anomaly detection of cardiac activities. Experimental results show the proposed methodology has strong potential to realize a smart and interconnected system for cardiac health management in the context of large-scale IoT network.\",\"PeriodicalId\":37744,\"journal\":{\"name\":\"IISE Transactions on Healthcare Systems Engineering\",\"volume\":\"10 1\",\"pages\":\"159 - 171\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24725579.2020.1741738\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE Transactions on Healthcare Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24725579.2020.1741738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2020.1741738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Network modeling and Internet of things for smart and connected health systems—a case study for smart heart health monitoring and management
Abstract Heart disease is a leading cause of death in the US. Recent advances in the Internet of Things (IoT) provide a great opportunity to realize smart and connected health systems through IoT monitoring and sensor-based data analytics of cardiac disorders. However, big data arising from the large-scale IoT system pose a significant challenge for efficient and effective sensory information processing and decision making. Very little has been done to glean pertinent information about the disease-altered cardiac activity in the context of large-scale IoT network. In this study, we propose a parallel computing framework for multi-level network modeling and monitoring of cardiac dynamics to realize the potential of IoT-enabled smart health management. Specifically, dissimilarities among cardiac signals are firstly characterized among heartbeats for an individual patient, as well as among representative heartbeats for different patients. Then, a stochastic learning approach is developed to optimize the embedding of cardiac signals into a beat-to-beat network model, as well as a patient-to-patient network model. Further, we develop a parallel computing algorithm to improve the computational efficiency. Finally, a statistical process monitoring scheme is designed to harness network features for real-time monitoring and anomaly detection of cardiac activities. Experimental results show the proposed methodology has strong potential to realize a smart and interconnected system for cardiac health management in the context of large-scale IoT network.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.