材料科学中的动态力学分析:新手的故事

IF 2.9 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sudeshna Patra, P. Ajayan, T. N. Narayanan
{"title":"材料科学中的动态力学分析:新手的故事","authors":"Sudeshna Patra, P. Ajayan, T. N. Narayanan","doi":"10.1093/oxfmat/itaa001","DOIUrl":null,"url":null,"abstract":"\n There are a few useful textbooks and online materials available on dynamic mechanical analysis (DMA) but no short and succinct article that will be useful for a beginner. Here we are providing a brief introductory overview of DMA, followed by details of the different types of measurements possible with a typical DMA instrument. Some of the important measures needing to be taken in these analyses are also summarized, along with the possibilities of designing new experiments with the help of a DMA instrument. Oscillatory stress/strain-assisted studies of two different types of membranes—a polymer membrane and a membrane which consists of assembled ultra-thin oxidized graphene flakes—are discussed at the end. These studies show the vast possibilities of DMA in understanding the different aspects of solids, such as their phase transitions, microstructure, damping, complex interactions in the composite matrix, and also about the mechanical modulus of the solid membrane. Hence this article discusses the new avenues for DMA in different fields and takes the reader from the fundamentals to its advanced applicability.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Dynamic mechanical analysis in materials science: The Novice’s Tale\",\"authors\":\"Sudeshna Patra, P. Ajayan, T. N. Narayanan\",\"doi\":\"10.1093/oxfmat/itaa001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are a few useful textbooks and online materials available on dynamic mechanical analysis (DMA) but no short and succinct article that will be useful for a beginner. Here we are providing a brief introductory overview of DMA, followed by details of the different types of measurements possible with a typical DMA instrument. Some of the important measures needing to be taken in these analyses are also summarized, along with the possibilities of designing new experiments with the help of a DMA instrument. Oscillatory stress/strain-assisted studies of two different types of membranes—a polymer membrane and a membrane which consists of assembled ultra-thin oxidized graphene flakes—are discussed at the end. These studies show the vast possibilities of DMA in understanding the different aspects of solids, such as their phase transitions, microstructure, damping, complex interactions in the composite matrix, and also about the mechanical modulus of the solid membrane. Hence this article discusses the new avenues for DMA in different fields and takes the reader from the fundamentals to its advanced applicability.\",\"PeriodicalId\":74385,\"journal\":{\"name\":\"Oxford open materials science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open materials science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfmat/itaa001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itaa001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

摘要

有一些有用的教科书和在线材料可用于动态力学分析(DMA),但没有简短的文章,将有用的初学者。在这里,我们将简要介绍DMA,然后详细介绍典型DMA仪器可能进行的不同类型的测量。还总结了在这些分析中需要采取的一些重要措施,以及利用DMA仪器设计新实验的可能性。最后讨论了振荡应力/应变辅助研究两种不同类型的膜-聚合物膜和由组装的超薄氧化石墨烯片组成的膜。这些研究显示了DMA在理解固体的不同方面的巨大可能性,例如它们的相变,微观结构,阻尼,复合基质中的复杂相互作用,以及固体膜的机械模量。因此,本文讨论了DMA在不同领域的新途径,并将读者从基础介绍到高级应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic mechanical analysis in materials science: The Novice’s Tale
There are a few useful textbooks and online materials available on dynamic mechanical analysis (DMA) but no short and succinct article that will be useful for a beginner. Here we are providing a brief introductory overview of DMA, followed by details of the different types of measurements possible with a typical DMA instrument. Some of the important measures needing to be taken in these analyses are also summarized, along with the possibilities of designing new experiments with the help of a DMA instrument. Oscillatory stress/strain-assisted studies of two different types of membranes—a polymer membrane and a membrane which consists of assembled ultra-thin oxidized graphene flakes—are discussed at the end. These studies show the vast possibilities of DMA in understanding the different aspects of solids, such as their phase transitions, microstructure, damping, complex interactions in the composite matrix, and also about the mechanical modulus of the solid membrane. Hence this article discusses the new avenues for DMA in different fields and takes the reader from the fundamentals to its advanced applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信