估算存活率的林德利-冈珀兹模型:性质及其在保险中的应用

Q1 Decision Sciences
Heba Soltan Mohamed, M. Masoom Ali, Haitham M. Yousof
{"title":"估算存活率的林德利-冈珀兹模型:性质及其在保险中的应用","authors":"Heba Soltan Mohamed,&nbsp;M. Masoom Ali,&nbsp;Haitham M. Yousof","doi":"10.1007/s40745-022-00450-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a new extension of the Gompertz function for estimating the survival rates. The actual survival rates from USA life tables 2015 is considered for assessment process under the ordinary least squares method. A real data application is presented under the maximum likelihood method. The new Gompertz function is compared with many other competitive ones such as the Gompertz, the exponentiated Gompertz, the Rayleigh Gompertz, Weibull Gompertz, the Burr type X Gompertz and Rayleigh generalized Gompertz models.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance\",\"authors\":\"Heba Soltan Mohamed,&nbsp;M. Masoom Ali,&nbsp;Haitham M. Yousof\",\"doi\":\"10.1007/s40745-022-00450-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a new extension of the Gompertz function for estimating the survival rates. The actual survival rates from USA life tables 2015 is considered for assessment process under the ordinary least squares method. A real data application is presented under the maximum likelihood method. The new Gompertz function is compared with many other competitive ones such as the Gompertz, the exponentiated Gompertz, the Rayleigh Gompertz, Weibull Gompertz, the Burr type X Gompertz and Rayleigh generalized Gompertz models.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-022-00450-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-022-00450-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了Gompertz函数估计生存率的一个新的扩展。在普通最小二乘法的评估过程中,考虑了2015年美国生命表的实际存活率。给出了最大似然法在实际数据中的应用。将新的Gompertz函数与许多其他竞争函数进行了比较,如Gompertz-、指数Gompertz-、Rayleigh-Gombertz-、Weibull-Gombertz、Burr型X Gomperty-和Rayleigh-广义Gompertz-模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance

This paper introduces a new extension of the Gompertz function for estimating the survival rates. The actual survival rates from USA life tables 2015 is considered for assessment process under the ordinary least squares method. A real data application is presented under the maximum likelihood method. The new Gompertz function is compared with many other competitive ones such as the Gompertz, the exponentiated Gompertz, the Rayleigh Gompertz, Weibull Gompertz, the Burr type X Gompertz and Rayleigh generalized Gompertz models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信