到同余关系的群和从范畴群到c交叉模的群

IF 0.5 4区 数学
Tamar Datuashvili, Osman Mucuk, Tunçar Şahan
{"title":"到同余关系的群和从范畴群到c交叉模的群","authors":"Tamar Datuashvili,&nbsp;Osman Mucuk,&nbsp;Tunçar Şahan","doi":"10.1007/s40062-020-00270-4","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to a c-group and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 3-4","pages":"625 - 640"},"PeriodicalIF":0.5000,"publicationDate":"2020-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00270-4","citationCount":"0","resultStr":"{\"title\":\"Groups up to congruence relation and from categorical groups to c-crossed modules\",\"authors\":\"Tamar Datuashvili,&nbsp;Osman Mucuk,&nbsp;Tunçar Şahan\",\"doi\":\"10.1007/s40062-020-00270-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to a c-group and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 3-4\",\"pages\":\"625 - 640\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00270-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00270-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00270-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入c群的概念,c群是一个达到同余关系的群,并考虑其相应的范畴。在此范畴中定义了扩展、动作和交叉模块(c交叉模块),并构造了半直接积。证明了每一个范畴群都产生一个c群和一个c交叉模,这个c交叉模是我们定义的意义上的连通的、特殊的、严格的c交叉模。所得结果将用于证明纯群和连通、特殊、严格c交叉模的一类等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups up to congruence relation and from categorical groups to c-crossed modules

We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to a c-group and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信