{"title":"具有三次非线性的二分量峰值系统的光滑多孤子解","authors":"Nianhua Li, Q.P. Liu","doi":"10.3842/sigma.2022.066","DOIUrl":null,"url":null,"abstract":"We present a reciprocal transformation which links the Geng-Xue equation to a particular reduction of the first negative flow of the Boussinesq hierarchy. We discuss two reductions of the reciprocal transformation for the Degasperis-Procesi and Novikov equations, respectively. With the aid of the Darboux transformation and the reciprocal transformation, we obtain a compact parametric representation for the smooth soliton solutions such as multi-kink solutions of the Geng-Xue equation.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity\",\"authors\":\"Nianhua Li, Q.P. Liu\",\"doi\":\"10.3842/sigma.2022.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a reciprocal transformation which links the Geng-Xue equation to a particular reduction of the first negative flow of the Boussinesq hierarchy. We discuss two reductions of the reciprocal transformation for the Degasperis-Procesi and Novikov equations, respectively. With the aid of the Darboux transformation and the reciprocal transformation, we obtain a compact parametric representation for the smooth soliton solutions such as multi-kink solutions of the Geng-Xue equation.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2022.066\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/sigma.2022.066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity
We present a reciprocal transformation which links the Geng-Xue equation to a particular reduction of the first negative flow of the Boussinesq hierarchy. We discuss two reductions of the reciprocal transformation for the Degasperis-Procesi and Novikov equations, respectively. With the aid of the Darboux transformation and the reciprocal transformation, we obtain a compact parametric representation for the smooth soliton solutions such as multi-kink solutions of the Geng-Xue equation.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.