自动对数和相关措施

IF 0.3 Q4 MATHEMATICS, APPLIED
R. Grigorchuk, R. Kogan, Yaroslav Vorobets
{"title":"自动对数和相关措施","authors":"R. Grigorchuk, R. Kogan, Yaroslav Vorobets","doi":"10.12958/adm2014","DOIUrl":null,"url":null,"abstract":"We introduce the notion of the automatic logarithm LogA(B) of a finite initial Mealy automaton B, with another automaton A as the base. It allows one to find for any input word w a power n such that B(w)=An(w). The purpose is to study the expanding properties of graphs describing the action of the group generated by A and B on input words of a fixed length interpreted as levels of a regular d-ary rooted tree T. Formally, the automatic logarithm is a single map LogA(B):∂T→Zd from the boundary of the tree to the d-adic integers. Under the assumption that theaction of the automaton A on the tree T is level-transitive andof bounded activity, we show that LogA(B) can be computed bya Moore machine. The distribution of values of the automatic logarithm yields a probabilistic measure μ on ∂T, which in some cases can be computed by a Mealy-type machine (we then say that μ is finite-state). We provide a criterion to determine whether μ is finite-state. A number of examples with A being the adding machine are considered.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic logarithm and associated measures\",\"authors\":\"R. Grigorchuk, R. Kogan, Yaroslav Vorobets\",\"doi\":\"10.12958/adm2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of the automatic logarithm LogA(B) of a finite initial Mealy automaton B, with another automaton A as the base. It allows one to find for any input word w a power n such that B(w)=An(w). The purpose is to study the expanding properties of graphs describing the action of the group generated by A and B on input words of a fixed length interpreted as levels of a regular d-ary rooted tree T. Formally, the automatic logarithm is a single map LogA(B):∂T→Zd from the boundary of the tree to the d-adic integers. Under the assumption that theaction of the automaton A on the tree T is level-transitive andof bounded activity, we show that LogA(B) can be computed bya Moore machine. The distribution of values of the automatic logarithm yields a probabilistic measure μ on ∂T, which in some cases can be computed by a Mealy-type machine (we then say that μ is finite-state). We provide a criterion to determine whether μ is finite-state. A number of examples with A being the adding machine are considered.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了以另一个自动机a为基的有限初始Mealy自动机B的自动对数LogA(B)的概念。它允许为任何输入字w找到幂n,使得B(w)=An(w)。其目的是研究描述A和B生成的群对固定长度的输入词的作用的图的展开性质,该输入词被解释为正则d元有根树T的级别→Zd从树的边界到d-adic整数。在假设自动机A在树T上的作用是水平传递的并且是有界活动的情况下,我们证明了LogA(B)可以由Moore机计算。自动对数值的分布产生了一个概率测度μ,在某些情况下,该测度可以通过Mealy型机器计算(然后我们说μ是有限状态)。我们提供了一个判定μ是否为有限状态的准则。考虑了一些以A为加法机的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic logarithm and associated measures
We introduce the notion of the automatic logarithm LogA(B) of a finite initial Mealy automaton B, with another automaton A as the base. It allows one to find for any input word w a power n such that B(w)=An(w). The purpose is to study the expanding properties of graphs describing the action of the group generated by A and B on input words of a fixed length interpreted as levels of a regular d-ary rooted tree T. Formally, the automatic logarithm is a single map LogA(B):∂T→Zd from the boundary of the tree to the d-adic integers. Under the assumption that theaction of the automaton A on the tree T is level-transitive andof bounded activity, we show that LogA(B) can be computed bya Moore machine. The distribution of values of the automatic logarithm yields a probabilistic measure μ on ∂T, which in some cases can be computed by a Mealy-type machine (we then say that μ is finite-state). We provide a criterion to determine whether μ is finite-state. A number of examples with A being the adding machine are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信