{"title":"双乘法泛函的联合连续性","authors":"A. Zivari-kazempour, M. Valaei","doi":"10.22130/SCMA.2020.127223.795","DOIUrl":null,"url":null,"abstract":"For Banach algebras $mathcal{A}$ and $mathcal{B}$, we show that if $mathfrak{A}=mathcal{A}times mathcal{B}$ is unital, then each bi-multiplicative mapping from $mathfrak{A}$ into a semisimple commutative Banach algebra $mathcal{D}$ is jointly continuous. This conclusion generalizes a famous result due to$check{text{S}}$ilov, concerning the automatic continuity of homomorphisms between Banach algebras. We also prove that every $n$-bi-multiplicative functionals on $mathfrak{A}$ is continuous if and only if it is continuous for the case $n=2$.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Continuity of Bi-multiplicative Functionals\",\"authors\":\"A. Zivari-kazempour, M. Valaei\",\"doi\":\"10.22130/SCMA.2020.127223.795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Banach algebras $mathcal{A}$ and $mathcal{B}$, we show that if $mathfrak{A}=mathcal{A}times mathcal{B}$ is unital, then each bi-multiplicative mapping from $mathfrak{A}$ into a semisimple commutative Banach algebra $mathcal{D}$ is jointly continuous. This conclusion generalizes a famous result due to$check{text{S}}$ilov, concerning the automatic continuity of homomorphisms between Banach algebras. We also prove that every $n$-bi-multiplicative functionals on $mathfrak{A}$ is continuous if and only if it is continuous for the case $n=2$.\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2020.127223.795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2020.127223.795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
For Banach algebras $mathcal{A}$ and $mathcal{B}$, we show that if $mathfrak{A}=mathcal{A}times mathcal{B}$ is unital, then each bi-multiplicative mapping from $mathfrak{A}$ into a semisimple commutative Banach algebra $mathcal{D}$ is jointly continuous. This conclusion generalizes a famous result due to$check{text{S}}$ilov, concerning the automatic continuity of homomorphisms between Banach algebras. We also prove that every $n$-bi-multiplicative functionals on $mathfrak{A}$ is continuous if and only if it is continuous for the case $n=2$.