复杂旋转流的稳定性分析

Q3 Engineering
Ivan Kazachkov
{"title":"复杂旋转流的稳定性分析","authors":"Ivan Kazachkov","doi":"10.37394/232011.2021.16.7","DOIUrl":null,"url":null,"abstract":"Based on the earlier developed mathematical model of the complex flow due to the double rotations in two perpendicular directions, the stability analysis is performed in the paper. The Navier-Stokes equations are derived in the coordinate system rotating around the two perpendicular different axes, the vertical one of them is arranged on some distance from the other axis of rotation, the horizontal axis is directed along the tangential line to the circle of the vertical rotation. The two centrifugal and Coriolis forces create the unique features in high oscillating flow, with localities of the stretched liquid, due to their action varying by the circumferential cylindrical coordinate in the channel flow. Stability analysis for the complex rotational flow under double rotations creating strongly varying mass forces and stretching of the liquid is considered at first","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis for Complex Rotational Flow\",\"authors\":\"Ivan Kazachkov\",\"doi\":\"10.37394/232011.2021.16.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the earlier developed mathematical model of the complex flow due to the double rotations in two perpendicular directions, the stability analysis is performed in the paper. The Navier-Stokes equations are derived in the coordinate system rotating around the two perpendicular different axes, the vertical one of them is arranged on some distance from the other axis of rotation, the horizontal axis is directed along the tangential line to the circle of the vertical rotation. The two centrifugal and Coriolis forces create the unique features in high oscillating flow, with localities of the stretched liquid, due to their action varying by the circumferential cylindrical coordinate in the channel flow. Stability analysis for the complex rotational flow under double rotations creating strongly varying mass forces and stretching of the liquid is considered at first\",\"PeriodicalId\":53603,\"journal\":{\"name\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232011.2021.16.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2021.16.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

基于早期发展的两个垂直方向上的双旋转复杂流动的数学模型,本文进行了稳定性分析。Navier-Stokes方程是在围绕两个垂直的不同轴旋转的坐标系中导出的,其中一个垂直轴与另一个旋转轴相距一定距离,水平轴沿垂直旋转圆的切线定向。两个离心力和科里奥利力在高振荡流中产生了独特的特征,由于它们的作用因通道流中的周向圆柱坐标而变化,拉伸液体的位置也随之变化。首先考虑了在产生强烈变化的质量力和液体拉伸的双重旋转下的复杂旋转流的稳定性分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Analysis for Complex Rotational Flow
Based on the earlier developed mathematical model of the complex flow due to the double rotations in two perpendicular directions, the stability analysis is performed in the paper. The Navier-Stokes equations are derived in the coordinate system rotating around the two perpendicular different axes, the vertical one of them is arranged on some distance from the other axis of rotation, the horizontal axis is directed along the tangential line to the circle of the vertical rotation. The two centrifugal and Coriolis forces create the unique features in high oscillating flow, with localities of the stretched liquid, due to their action varying by the circumferential cylindrical coordinate in the channel flow. Stability analysis for the complex rotational flow under double rotations creating strongly varying mass forces and stretching of the liquid is considered at first
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Applied and Theoretical Mechanics
WSEAS Transactions on Applied and Theoretical Mechanics Engineering-Computational Mechanics
CiteScore
1.30
自引率
0.00%
发文量
21
期刊介绍: WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信