一类线性随机偏微分方程的蒙特卡罗格式

IF 0.8 Q3 STATISTICS & PROBABILITY
Takuya Nakagawa, Akihiro Tanaka
{"title":"一类线性随机偏微分方程的蒙特卡罗格式","authors":"Takuya Nakagawa, Akihiro Tanaka","doi":"10.1515/mcma-2021-2088","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to study the simulation of the expectation for the solution of linear stochastic partial differential equation driven by the space-time white noise with the bounded measurable coefficient and different boundary conditions. We first propose a Monte Carlo type method for the expectation of the solution of a linear stochastic partial differential equation and prove an upper bound for its weak rate error. In addition, we prove the central limit theorem for the proposed method in order to obtain confidence intervals for it. As an application, the Monte Carlo scheme applies to the stochastic heat equation with various boundary conditions, and we provide the result of numerical experiments which confirm the theoretical results in this paper.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"169 - 193"},"PeriodicalIF":0.8000,"publicationDate":"2021-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2021-2088","citationCount":"1","resultStr":"{\"title\":\"On a Monte Carlo scheme for some linear stochastic partial differential equations\",\"authors\":\"Takuya Nakagawa, Akihiro Tanaka\",\"doi\":\"10.1515/mcma-2021-2088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to study the simulation of the expectation for the solution of linear stochastic partial differential equation driven by the space-time white noise with the bounded measurable coefficient and different boundary conditions. We first propose a Monte Carlo type method for the expectation of the solution of a linear stochastic partial differential equation and prove an upper bound for its weak rate error. In addition, we prove the central limit theorem for the proposed method in order to obtain confidence intervals for it. As an application, the Monte Carlo scheme applies to the stochastic heat equation with various boundary conditions, and we provide the result of numerical experiments which confirm the theoretical results in this paper.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"27 1\",\"pages\":\"169 - 193\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2021-2088\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2021-2088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了具有有界可测系数和不同边界条件的时空白噪声驱动的线性随机偏微分方程解的期望模拟。首先提出了线性随机偏微分方程解的期望的蒙特卡罗式方法,并证明了其弱速率误差的上界。此外,我们还证明了该方法的中心极限定理,从而得到了该方法的置信区间。作为应用,蒙特卡罗格式适用于各种边界条件下的随机热方程,并给出了数值实验结果,证实了本文的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Monte Carlo scheme for some linear stochastic partial differential equations
Abstract The aim of this paper is to study the simulation of the expectation for the solution of linear stochastic partial differential equation driven by the space-time white noise with the bounded measurable coefficient and different boundary conditions. We first propose a Monte Carlo type method for the expectation of the solution of a linear stochastic partial differential equation and prove an upper bound for its weak rate error. In addition, we prove the central limit theorem for the proposed method in order to obtain confidence intervals for it. As an application, the Monte Carlo scheme applies to the stochastic heat equation with various boundary conditions, and we provide the result of numerical experiments which confirm the theoretical results in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信