基于快速卷积的时空切比雪夫谱方法研究周期动力学模型

IF 2.3 Q1 MATHEMATICS
L. Lopez, S. F. Pellegrino
{"title":"基于快速卷积的时空切比雪夫谱方法研究周期动力学模型","authors":"L. Lopez, S. F. Pellegrino","doi":"10.48550/arXiv.2209.02689","DOIUrl":null,"url":null,"abstract":"Peridynamics is a nonlocal generalization of continuum mechanics theory which addresses discontinuous problems without using partial derivatives and replacing them by an integral operator. As a consequence, it finds applications in the framework of the development and evolution of fractures and damages in elastic materials. In this paper we consider a one-dimensional nonlinear model of peridynamics and propose a suitable two-dimensional fast-convolution spectral method based on Chebyshev polynomials to solve the model. This choice allows us to gain the same accuracy both in space and time. We show the convergence of the method and perform several simulations to study the performance of the spectral scheme.","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A fast-convolution based space–time Chebyshev spectral method for peridynamic models\",\"authors\":\"L. Lopez, S. F. Pellegrino\",\"doi\":\"10.48550/arXiv.2209.02689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peridynamics is a nonlocal generalization of continuum mechanics theory which addresses discontinuous problems without using partial derivatives and replacing them by an integral operator. As a consequence, it finds applications in the framework of the development and evolution of fractures and damages in elastic materials. In this paper we consider a one-dimensional nonlinear model of peridynamics and propose a suitable two-dimensional fast-convolution spectral method based on Chebyshev polynomials to solve the model. This choice allows us to gain the same accuracy both in space and time. We show the convergence of the method and perform several simulations to study the performance of the spectral scheme.\",\"PeriodicalId\":72091,\"journal\":{\"name\":\"Advances in continuous and discrete models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in continuous and discrete models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.02689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in continuous and discrete models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.02689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

周期动力学是连续介质力学理论的非局部推广,它不使用偏导数和用积分算子代替偏导数来解决不连续问题。因此,它在弹性材料中断裂和损伤的发展和演变的框架中找到了应用。本文考虑一维非线性周期动力学模型,提出了一种基于切比雪夫多项式的二维快速卷积谱法来求解该模型。这种选择使我们能够在空间和时间上获得相同的精度。我们证明了该方法的收敛性,并进行了几个仿真来研究谱格式的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast-convolution based space–time Chebyshev spectral method for peridynamic models
Peridynamics is a nonlocal generalization of continuum mechanics theory which addresses discontinuous problems without using partial derivatives and replacing them by an integral operator. As a consequence, it finds applications in the framework of the development and evolution of fractures and damages in elastic materials. In this paper we consider a one-dimensional nonlinear model of peridynamics and propose a suitable two-dimensional fast-convolution spectral method based on Chebyshev polynomials to solve the model. This choice allows us to gain the same accuracy both in space and time. We show the convergence of the method and perform several simulations to study the performance of the spectral scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信