{"title":"变指数Sobolev迹空间的电容刻画","authors":"Mohamed Berghout","doi":"10.2478/mjpaa-2022-0020","DOIUrl":null,"url":null,"abstract":"Abstract Let Ω ⊂ ℝn be an open set. We give a new characterization of zero trace functions f∈𝒞(Ω¯)∩W01,p(.)(Ω) f \\in \\mathcal{C}\\left( {\\bar \\Omega } \\right) \\cap W_0^{1,p\\left( . \\right)}\\left( \\Omega \\right) . If in addition Ω is bounded, then we give a sufficient condition for which the mapping f↦ℒp(.),fΩ f \\mapsto \\mathcal{L}_{p\\left( . \\right),f}^\\Omega from a set of real extended functions f : ∂Ω −→ ℝ to the nonlinear harmonic space (Ω,ℋℒp(.)) is injective, where ℒp(.),fΩ \\mathcal{L}_{p\\left( . \\right),f}^\\Omega denotes the Perron-Wiener-Brelot solution for the Dirichlet problem: { ℒp(.)u:=-Δp(.)u+ℬ(.,u)=0in Ω;u=fon ∂Ω, \\left\\{ {\\matrix{{{\\mathcal{L}_{p\\left( . \\right)}}u: = - {\\Delta _{p\\left( . \\right)}}u + \\mathcal{B}\\left( {.,u} \\right) = 0} \\hfill & {in\\,\\Omega ;} \\hfill \\cr {u = f} \\hfill & {on\\,\\partial \\Omega ,} \\hfill \\cr } } \\right. where ℬ is a given Carathéodory function satisfies some structural conditions.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"286 - 298"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacitary characterization of variable exponent Sobolev trace spaces\",\"authors\":\"Mohamed Berghout\",\"doi\":\"10.2478/mjpaa-2022-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let Ω ⊂ ℝn be an open set. We give a new characterization of zero trace functions f∈𝒞(Ω¯)∩W01,p(.)(Ω) f \\\\in \\\\mathcal{C}\\\\left( {\\\\bar \\\\Omega } \\\\right) \\\\cap W_0^{1,p\\\\left( . \\\\right)}\\\\left( \\\\Omega \\\\right) . If in addition Ω is bounded, then we give a sufficient condition for which the mapping f↦ℒp(.),fΩ f \\\\mapsto \\\\mathcal{L}_{p\\\\left( . \\\\right),f}^\\\\Omega from a set of real extended functions f : ∂Ω −→ ℝ to the nonlinear harmonic space (Ω,ℋℒp(.)) is injective, where ℒp(.),fΩ \\\\mathcal{L}_{p\\\\left( . \\\\right),f}^\\\\Omega denotes the Perron-Wiener-Brelot solution for the Dirichlet problem: { ℒp(.)u:=-Δp(.)u+ℬ(.,u)=0in Ω;u=fon ∂Ω, \\\\left\\\\{ {\\\\matrix{{{\\\\mathcal{L}_{p\\\\left( . \\\\right)}}u: = - {\\\\Delta _{p\\\\left( . \\\\right)}}u + \\\\mathcal{B}\\\\left( {.,u} \\\\right) = 0} \\\\hfill & {in\\\\,\\\\Omega ;} \\\\hfill \\\\cr {u = f} \\\\hfill & {on\\\\,\\\\partial \\\\Omega ,} \\\\hfill \\\\cr } } \\\\right. where ℬ is a given Carathéodory function satisfies some structural conditions.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"286 - 298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Capacitary characterization of variable exponent Sobolev trace spaces
Abstract Let Ω ⊂ ℝn be an open set. We give a new characterization of zero trace functions f∈𝒞(Ω¯)∩W01,p(.)(Ω) f \in \mathcal{C}\left( {\bar \Omega } \right) \cap W_0^{1,p\left( . \right)}\left( \Omega \right) . If in addition Ω is bounded, then we give a sufficient condition for which the mapping f↦ℒp(.),fΩ f \mapsto \mathcal{L}_{p\left( . \right),f}^\Omega from a set of real extended functions f : ∂Ω −→ ℝ to the nonlinear harmonic space (Ω,ℋℒp(.)) is injective, where ℒp(.),fΩ \mathcal{L}_{p\left( . \right),f}^\Omega denotes the Perron-Wiener-Brelot solution for the Dirichlet problem: { ℒp(.)u:=-Δp(.)u+ℬ(.,u)=0in Ω;u=fon ∂Ω, \left\{ {\matrix{{{\mathcal{L}_{p\left( . \right)}}u: = - {\Delta _{p\left( . \right)}}u + \mathcal{B}\left( {.,u} \right) = 0} \hfill & {in\,\Omega ;} \hfill \cr {u = f} \hfill & {on\,\partial \Omega ,} \hfill \cr } } \right. where ℬ is a given Carathéodory function satisfies some structural conditions.