交替置换数的一个同余

IF 0.4 Q4 MATHEMATICS
Sumit Kumar Jha
{"title":"交替置换数的一个同余","authors":"Sumit Kumar Jha","doi":"10.35834/2020/3301099","DOIUrl":null,"url":null,"abstract":"We present a new proof of a result of Knuth and Buckholtz concerning the period of the number of alternating congruences modulo an odd prime. The proof is based on properties of special functions, specifically the polylogarithm, Dirichlet eta and beta functions, and Stirling numbers of the second kind.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Congruence for the Number of Alternating Permutations\",\"authors\":\"Sumit Kumar Jha\",\"doi\":\"10.35834/2020/3301099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new proof of a result of Knuth and Buckholtz concerning the period of the number of alternating congruences modulo an odd prime. The proof is based on properties of special functions, specifically the polylogarithm, Dirichlet eta and beta functions, and Stirling numbers of the second kind.\",\"PeriodicalId\":42784,\"journal\":{\"name\":\"Missouri Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Missouri Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35834/2020/3301099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/2020/3301099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了Knuth和Buckholtz关于交替同余数模奇数素数的周期的结果的一个新的证明。该证明基于特殊函数的性质,特别是多对数、狄利克雷-贝塔函数和第二类斯特灵数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Congruence for the Number of Alternating Permutations
We present a new proof of a result of Knuth and Buckholtz concerning the period of the number of alternating congruences modulo an odd prime. The proof is based on properties of special functions, specifically the polylogarithm, Dirichlet eta and beta functions, and Stirling numbers of the second kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
9
期刊介绍: Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信