Daiana Araujo Santana-Oliveira, Aline Fernandes-da-Silva, Carolline Santos Miranda, F. F. Martins, C. Mandarim-de-Lacerda, V. Souza-Mello
{"title":"ppar - α激动剂和DPP-4抑制剂可减轻肥胖小鼠的脂肪细胞功能障碍。","authors":"Daiana Araujo Santana-Oliveira, Aline Fernandes-da-Silva, Carolline Santos Miranda, F. F. Martins, C. Mandarim-de-Lacerda, V. Souza-Mello","doi":"10.1530/JME-21-0084","DOIUrl":null,"url":null,"abstract":"Obesity causes white and brown adipocyte dysfunction, reducing browning and stimulating whitening. Drugs that tackle adipocyte dysfunction through thermogenesis stimulation could be used to treat obesity. This study sought to address whether a combination of the PPAR-alpha agonist (WY14643) and DPP4i (linagliptin) potentiates browning and mitigates adipose tissue dysfunction, emphasizing the pathways related to browning induction and the underlying thermogenesis in high-fat-fed mice. Adult male C57BL/6 mice were randomly assigned to receive a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for twelve weeks. Experiment 1 aimed to evaluate whether five weeks of combined therapy was able to potentiate browning using a five-group design: C, HF, HFW (monotherapy with WY14643, 2.5 mg/kg body mass), HFL (monotherapy with linagliptin, 15 mg/kg body mass), and HFC (a combination of both drugs). Experiment 2 further addressed the pathways involved in browning maximization using a four-group study design: C, CC (C diet plus the drug combination), HF, and HFC (HF diet plus the drug combination). The HF group showed overweight, oral glucose intolerance, sWAT adipocyte hypertrophy, and reduced numerical density of nuclei per area of BAT, confirming whitening. Only the combined treatment normalized these parameters in addition to body temperature increases, browning induction, and whitening rescue. The high expression of thermogenic marker genes parallel to reduced expression of inflammatory and endoplasmic reticulum stress genes mediated the beneficial findings. Hence, the PPAR-alpha agonist and DPP-4i combination is a promising target for obesity control by inducing functional brown adipocytes, browning of sWAT, and enhanced adaptive thermogenesis.","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A PPAR-alpha agonist and DPP-4 inhibitor mitigate adipocyte dysfunction in obese mice.\",\"authors\":\"Daiana Araujo Santana-Oliveira, Aline Fernandes-da-Silva, Carolline Santos Miranda, F. F. Martins, C. Mandarim-de-Lacerda, V. Souza-Mello\",\"doi\":\"10.1530/JME-21-0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesity causes white and brown adipocyte dysfunction, reducing browning and stimulating whitening. Drugs that tackle adipocyte dysfunction through thermogenesis stimulation could be used to treat obesity. This study sought to address whether a combination of the PPAR-alpha agonist (WY14643) and DPP4i (linagliptin) potentiates browning and mitigates adipose tissue dysfunction, emphasizing the pathways related to browning induction and the underlying thermogenesis in high-fat-fed mice. Adult male C57BL/6 mice were randomly assigned to receive a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for twelve weeks. Experiment 1 aimed to evaluate whether five weeks of combined therapy was able to potentiate browning using a five-group design: C, HF, HFW (monotherapy with WY14643, 2.5 mg/kg body mass), HFL (monotherapy with linagliptin, 15 mg/kg body mass), and HFC (a combination of both drugs). Experiment 2 further addressed the pathways involved in browning maximization using a four-group study design: C, CC (C diet plus the drug combination), HF, and HFC (HF diet plus the drug combination). The HF group showed overweight, oral glucose intolerance, sWAT adipocyte hypertrophy, and reduced numerical density of nuclei per area of BAT, confirming whitening. Only the combined treatment normalized these parameters in addition to body temperature increases, browning induction, and whitening rescue. The high expression of thermogenic marker genes parallel to reduced expression of inflammatory and endoplasmic reticulum stress genes mediated the beneficial findings. Hence, the PPAR-alpha agonist and DPP-4i combination is a promising target for obesity control by inducing functional brown adipocytes, browning of sWAT, and enhanced adaptive thermogenesis.\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-21-0084\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-21-0084","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A PPAR-alpha agonist and DPP-4 inhibitor mitigate adipocyte dysfunction in obese mice.
Obesity causes white and brown adipocyte dysfunction, reducing browning and stimulating whitening. Drugs that tackle adipocyte dysfunction through thermogenesis stimulation could be used to treat obesity. This study sought to address whether a combination of the PPAR-alpha agonist (WY14643) and DPP4i (linagliptin) potentiates browning and mitigates adipose tissue dysfunction, emphasizing the pathways related to browning induction and the underlying thermogenesis in high-fat-fed mice. Adult male C57BL/6 mice were randomly assigned to receive a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for twelve weeks. Experiment 1 aimed to evaluate whether five weeks of combined therapy was able to potentiate browning using a five-group design: C, HF, HFW (monotherapy with WY14643, 2.5 mg/kg body mass), HFL (monotherapy with linagliptin, 15 mg/kg body mass), and HFC (a combination of both drugs). Experiment 2 further addressed the pathways involved in browning maximization using a four-group study design: C, CC (C diet plus the drug combination), HF, and HFC (HF diet plus the drug combination). The HF group showed overweight, oral glucose intolerance, sWAT adipocyte hypertrophy, and reduced numerical density of nuclei per area of BAT, confirming whitening. Only the combined treatment normalized these parameters in addition to body temperature increases, browning induction, and whitening rescue. The high expression of thermogenic marker genes parallel to reduced expression of inflammatory and endoplasmic reticulum stress genes mediated the beneficial findings. Hence, the PPAR-alpha agonist and DPP-4i combination is a promising target for obesity control by inducing functional brown adipocytes, browning of sWAT, and enhanced adaptive thermogenesis.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.