利用贝叶斯反演估算带偏移的地震振幅变化的净总比和净产油

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
S. Tschache, V. Vinje, Jan Erik Lie, Martin Brandtzæg Gundem, Einar Iversen
{"title":"利用贝叶斯反演估算带偏移的地震振幅变化的净总比和净产油","authors":"S. Tschache, V. Vinje, Jan Erik Lie, Martin Brandtzæg Gundem, Einar Iversen","doi":"10.1190/int-2023-0034.1","DOIUrl":null,"url":null,"abstract":"Net-to-gross ratio and net pay are essential properties for characterizing turbidite reservoirs. We present a Bayesian inversion that estimates the probability density distributions of the reservoir properties from the amplitude-variation-with-offset (AVO) attributes intercept and gradient, which are measured at the top of the reservoir. The method is adapted to the region-specific characteristics of the sand-shale interbedding as observed from well data. The likelihood function is estimated by a Monte Carlo simulation, which involves generating pseudo-wells, seismic modeling using the reflectivity method, picking the amplitudes at the top of the reservoir, and estimating the AVO intercept and gradient. In a North Sea oil field case example, the AVO gradient is most sensitive to variations in the net-to-gross ratio, while the AVO intercept is most sensitive to the type of pore fluid. The inversion was successfully tested on pseudo-wells and synthetic seismic AVO from well data. We show that the inversion can be applied to AVO maps to produce maps of the most likely estimates of the net-to-gross ratio and the net pay-to-net ratio, the resulting net pay, and the uncertainty.","PeriodicalId":51318,"journal":{"name":"Interpretation-A Journal of Subsurface Characterization","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of net-to-gross ratio and net pay from seismic amplitude variation with offset using Bayesian inversion\",\"authors\":\"S. Tschache, V. Vinje, Jan Erik Lie, Martin Brandtzæg Gundem, Einar Iversen\",\"doi\":\"10.1190/int-2023-0034.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Net-to-gross ratio and net pay are essential properties for characterizing turbidite reservoirs. We present a Bayesian inversion that estimates the probability density distributions of the reservoir properties from the amplitude-variation-with-offset (AVO) attributes intercept and gradient, which are measured at the top of the reservoir. The method is adapted to the region-specific characteristics of the sand-shale interbedding as observed from well data. The likelihood function is estimated by a Monte Carlo simulation, which involves generating pseudo-wells, seismic modeling using the reflectivity method, picking the amplitudes at the top of the reservoir, and estimating the AVO intercept and gradient. In a North Sea oil field case example, the AVO gradient is most sensitive to variations in the net-to-gross ratio, while the AVO intercept is most sensitive to the type of pore fluid. The inversion was successfully tested on pseudo-wells and synthetic seismic AVO from well data. We show that the inversion can be applied to AVO maps to produce maps of the most likely estimates of the net-to-gross ratio and the net pay-to-net ratio, the resulting net pay, and the uncertainty.\",\"PeriodicalId\":51318,\"journal\":{\"name\":\"Interpretation-A Journal of Subsurface Characterization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpretation-A Journal of Subsurface Characterization\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/int-2023-0034.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretation-A Journal of Subsurface Characterization","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/int-2023-0034.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

净毛比和净产层是浊积岩储层表征的基本属性。我们提出了一种贝叶斯反演方法,通过在储层顶部测量的振幅随偏移量变化(AVO)属性的截距和梯度来估计储层属性的概率密度分布。该方法适用于从井资料中观察到的砂-页岩互层的区域特征。通过蒙特卡罗模拟来估计似然函数,其中包括生成伪井,使用反射率法进行地震建模,选取储层顶部的振幅,并估计AVO截距和梯度。在北海油田的实例中,AVO梯度对净毛比的变化最为敏感,而AVO截距对孔隙流体类型最为敏感。该方法在拟井和合成地震AVO资料上进行了成功的反演试验。我们表明,反演可以应用于AVO图,以产生最可能的净毛比和净产油比估计图,由此产生的净产油和不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of net-to-gross ratio and net pay from seismic amplitude variation with offset using Bayesian inversion
Net-to-gross ratio and net pay are essential properties for characterizing turbidite reservoirs. We present a Bayesian inversion that estimates the probability density distributions of the reservoir properties from the amplitude-variation-with-offset (AVO) attributes intercept and gradient, which are measured at the top of the reservoir. The method is adapted to the region-specific characteristics of the sand-shale interbedding as observed from well data. The likelihood function is estimated by a Monte Carlo simulation, which involves generating pseudo-wells, seismic modeling using the reflectivity method, picking the amplitudes at the top of the reservoir, and estimating the AVO intercept and gradient. In a North Sea oil field case example, the AVO gradient is most sensitive to variations in the net-to-gross ratio, while the AVO intercept is most sensitive to the type of pore fluid. The inversion was successfully tested on pseudo-wells and synthetic seismic AVO from well data. We show that the inversion can be applied to AVO maps to produce maps of the most likely estimates of the net-to-gross ratio and the net pay-to-net ratio, the resulting net pay, and the uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
8.30%
发文量
126
期刊介绍: ***Jointly published by the American Association of Petroleum Geologists (AAPG) and the Society of Exploration Geophysicists (SEG)*** Interpretation is a new, peer-reviewed journal for advancing the practice of subsurface interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信