Gorenstein投影$\tau$-倾斜模的一个构造

IF 0.4 4区 数学 Q4 MATHEMATICS
Zhi-wei Li, Xiaojin Zhang
{"title":"Gorenstein投影$\\tau$-倾斜模的一个构造","authors":"Zhi-wei Li, Xiaojin Zhang","doi":"10.4064/cm8682-1-2022","DOIUrl":null,"url":null,"abstract":"We give a construction of Gorenstein projective τ -tilting modules in terms of tensor products of modules. As a consequence, we give a class of non-self-injective algebras admitting non-trivial Gorenstein projective τ -tilting modules. Moreover, we show that a finite dimensional algebra Λ over an algebraically closed field is CM -τ -tilting finite if Tn(Λ) is CM -τ -tilting finite which gives a partial answer to a question on CM -τ -tilting finite algebras posed by Xie and Zhang.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A construction of Gorenstein projective $\\\\tau $-tilting modules\",\"authors\":\"Zhi-wei Li, Xiaojin Zhang\",\"doi\":\"10.4064/cm8682-1-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a construction of Gorenstein projective τ -tilting modules in terms of tensor products of modules. As a consequence, we give a class of non-self-injective algebras admitting non-trivial Gorenstein projective τ -tilting modules. Moreover, we show that a finite dimensional algebra Λ over an algebraically closed field is CM -τ -tilting finite if Tn(Λ) is CM -τ -tilting finite which gives a partial answer to a question on CM -τ -tilting finite algebras posed by Xie and Zhang.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8682-1-2022\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8682-1-2022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们用模的张量积给出了Gorenstein投影τ-倾斜模的一个构造。因此,我们给出了一类允许非平凡Gorenstein投影τ-倾斜模的非自内射代数。此外,我们证明了代数闭域上的有限维代数∧是CM-τ-倾斜有限的,如果Tn(∧)是CM-τ-倾转有限的,这给出了谢和张提出的关于CM-τ倾斜有限代数的一个问题的部分答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A construction of Gorenstein projective $\tau $-tilting modules
We give a construction of Gorenstein projective τ -tilting modules in terms of tensor products of modules. As a consequence, we give a class of non-self-injective algebras admitting non-trivial Gorenstein projective τ -tilting modules. Moreover, we show that a finite dimensional algebra Λ over an algebraically closed field is CM -τ -tilting finite if Tn(Λ) is CM -τ -tilting finite which gives a partial answer to a question on CM -τ -tilting finite algebras posed by Xie and Zhang.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信