分布环的Serre猜想的一个类比

Q3 Mathematics
A. Sasane
{"title":"分布环的Serre猜想的一个类比","authors":"A. Sasane","doi":"10.1515/taa-2020-0100","DOIUrl":null,"url":null,"abstract":"Abstract The set 𝒜 := 𝔺δ0+ 𝒟+′, obtained by attaching the identity δ0 to the set 𝒟+′ of all distributions on 𝕉 with support contained in (0, ∞), forms an algebra with the operations of addition, convolution, multiplication by complex scalars. It is shown that 𝒜 is a Hermite ring, that is, every finitely generated stably free 𝒜-module is free, or equivalently, every tall left-invertible matrix with entries from 𝒜 can be completed to a square matrix with entries from 𝒜, which is invertible.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"8 1","pages":"88 - 91"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2020-0100","citationCount":"0","resultStr":"{\"title\":\"An analogue of Serre’s conjecture for a ring of distributions\",\"authors\":\"A. Sasane\",\"doi\":\"10.1515/taa-2020-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The set 𝒜 := 𝔺δ0+ 𝒟+′, obtained by attaching the identity δ0 to the set 𝒟+′ of all distributions on 𝕉 with support contained in (0, ∞), forms an algebra with the operations of addition, convolution, multiplication by complex scalars. It is shown that 𝒜 is a Hermite ring, that is, every finitely generated stably free 𝒜-module is free, or equivalently, every tall left-invertible matrix with entries from 𝒜 can be completed to a square matrix with entries from 𝒜, which is invertible.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"8 1\",\"pages\":\"88 - 91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2020-0100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2020-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2020-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在(0,∞)的支持下,将等式δ0附加到𝕉上所有分布的集合的λ + '上,得到一个集:=𝔺δ0+ + ',用复数标量进行加法、卷积、乘法运算,形成一个代数。证明了它是一个Hermite环,即每一个有限生成的稳定自由的𝒜-module都是自由的,或者等价地,每一个高的左可逆的矩阵都可以被补成一个包含有等式的平方矩阵,它是可逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analogue of Serre’s conjecture for a ring of distributions
Abstract The set 𝒜 := 𝔺δ0+ 𝒟+′, obtained by attaching the identity δ0 to the set 𝒟+′ of all distributions on 𝕉 with support contained in (0, ∞), forms an algebra with the operations of addition, convolution, multiplication by complex scalars. It is shown that 𝒜 is a Hermite ring, that is, every finitely generated stably free 𝒜-module is free, or equivalently, every tall left-invertible matrix with entries from 𝒜 can be completed to a square matrix with entries from 𝒜, which is invertible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信