具有自发波函数坍缩的薛定谔-牛顿方程

Q2 Physics and Astronomy
L. Di'osi
{"title":"具有自发波函数坍缩的薛定谔-牛顿方程","authors":"L. Di'osi","doi":"10.3390/quantum4040041","DOIUrl":null,"url":null,"abstract":"Based on the assumption that the standard Schrödinger equation becomes gravitationally modified for massive macroscopic objects, two independent proposals have survived from the 1980s. The Schrödinger–Newton equation (1984) provides well-localized solitons for free macro-objects but lacks the mechanism of how extended wave functions collapse on solitons. The gravity-related stochastic Schrödinger equation (1989) provides the spontaneous collapse, but the resulting solitons undergo a tiny diffusion, leading to an inconvenient steady increase in the kinetic energy. We propose the stochastic Schrödinger–Newton equation, which contains the above two gravity-related modifications together. Then, the wave functions of free macroscopic bodies will gradually and stochastically collapse to solitons, which perform inertial motion without momentum diffusion: conservation of momentum and energy is restored.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schrödinger–Newton Equation with Spontaneous Wave Function Collapse\",\"authors\":\"L. Di'osi\",\"doi\":\"10.3390/quantum4040041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the assumption that the standard Schrödinger equation becomes gravitationally modified for massive macroscopic objects, two independent proposals have survived from the 1980s. The Schrödinger–Newton equation (1984) provides well-localized solitons for free macro-objects but lacks the mechanism of how extended wave functions collapse on solitons. The gravity-related stochastic Schrödinger equation (1989) provides the spontaneous collapse, but the resulting solitons undergo a tiny diffusion, leading to an inconvenient steady increase in the kinetic energy. We propose the stochastic Schrödinger–Newton equation, which contains the above two gravity-related modifications together. Then, the wave functions of free macroscopic bodies will gradually and stochastically collapse to solitons, which perform inertial motion without momentum diffusion: conservation of momentum and energy is restored.\",\"PeriodicalId\":34124,\"journal\":{\"name\":\"Quantum Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/quantum4040041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum4040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

基于标准薛定谔方程对大质量宏观物体进行引力修正的假设,自20世纪80年代以来,有两个独立的提案幸存下来。薛定谔-牛顿方程(1984)为自由宏观物体提供了很好的局域孤子,但缺乏扩展波函数如何在孤子上坍缩的机制。与重力相关的随机薛定谔方程(1989)提供了自发坍缩,但由此产生的孤子经历了微小的扩散,导致动能的不方便的稳定增加。我们提出了随机薛定谔-牛顿方程,该方程包含了上述两个与重力有关的修正。然后,自由宏观物体的波函数将逐渐随机地坍缩为孤子,孤子在没有动量扩散的情况下进行惯性运动:动量和能量守恒得到恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schrödinger–Newton Equation with Spontaneous Wave Function Collapse
Based on the assumption that the standard Schrödinger equation becomes gravitationally modified for massive macroscopic objects, two independent proposals have survived from the 1980s. The Schrödinger–Newton equation (1984) provides well-localized solitons for free macro-objects but lacks the mechanism of how extended wave functions collapse on solitons. The gravity-related stochastic Schrödinger equation (1989) provides the spontaneous collapse, but the resulting solitons undergo a tiny diffusion, leading to an inconvenient steady increase in the kinetic energy. We propose the stochastic Schrödinger–Newton equation, which contains the above two gravity-related modifications together. Then, the wave functions of free macroscopic bodies will gradually and stochastically collapse to solitons, which perform inertial motion without momentum diffusion: conservation of momentum and energy is restored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信