B. Kenzhegulov, S.B. Kenzhegulova, D. B. Alibiyev, A.Sh. Kazhikenova
{"title":"等截面完整杆件热传播的有限元建模","authors":"B. Kenzhegulov, S.B. Kenzhegulova, D. B. Alibiyev, A.Sh. Kazhikenova","doi":"10.31489/2022ph4/94-105","DOIUrl":null,"url":null,"abstract":"In this paper, the definition of the temperature distribution field for a rod made of heat-resistant alloy EI48 is introduced. The authors consider for the study a complete rod of circular cross-section of radius R, of limited length L. Studied body is under the influence of a heat flow q from the surface over the entire cross-sectional area of the left end, and heat exchange with the environment occurs on the cross-sectional area of the right end. The rod is thermally insulated along the side surface. The authors consider two cases: the first is the heat flow with intensity q can be set on the area of a small circle with radius r <R, the second is the heat flow can be set on its part, that is, on the area 2 2 R . During the study, the authors showed that during the thermomechanical process, the strength of each section of the load-bearing structural elements is significantly influenced by the temperature distribution field. The influence of high temperature on the morphology of heat-resistant alloys is also shown. This leads to the fact that in some parts of the structural elements the temperature will be acceptable, and in some — critical. As a result, rapid wear of structural elements and loss of their physical qualities occur. Therefore, mathematical modeling of temperature distribution field for a body of various configurations is an urgent problem. The article presents a method for constructing a mathematical model and a corresponding computational algorithm that allows solving a class of problems to determine the regularities of the temperature distribution field in the elements of rod-shaped structures. To do this, the authors used the energy-variation principle in combination with the finite element method.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element modeling of heat propagation of a complete rod of constant cross-section\",\"authors\":\"B. Kenzhegulov, S.B. Kenzhegulova, D. B. Alibiyev, A.Sh. Kazhikenova\",\"doi\":\"10.31489/2022ph4/94-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the definition of the temperature distribution field for a rod made of heat-resistant alloy EI48 is introduced. The authors consider for the study a complete rod of circular cross-section of radius R, of limited length L. Studied body is under the influence of a heat flow q from the surface over the entire cross-sectional area of the left end, and heat exchange with the environment occurs on the cross-sectional area of the right end. The rod is thermally insulated along the side surface. The authors consider two cases: the first is the heat flow with intensity q can be set on the area of a small circle with radius r <R, the second is the heat flow can be set on its part, that is, on the area 2 2 R . During the study, the authors showed that during the thermomechanical process, the strength of each section of the load-bearing structural elements is significantly influenced by the temperature distribution field. The influence of high temperature on the morphology of heat-resistant alloys is also shown. This leads to the fact that in some parts of the structural elements the temperature will be acceptable, and in some — critical. As a result, rapid wear of structural elements and loss of their physical qualities occur. Therefore, mathematical modeling of temperature distribution field for a body of various configurations is an urgent problem. The article presents a method for constructing a mathematical model and a corresponding computational algorithm that allows solving a class of problems to determine the regularities of the temperature distribution field in the elements of rod-shaped structures. To do this, the authors used the energy-variation principle in combination with the finite element method.\",\"PeriodicalId\":29904,\"journal\":{\"name\":\"Bulletin of the University of Karaganda-Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the University of Karaganda-Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022ph4/94-105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022ph4/94-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Finite element modeling of heat propagation of a complete rod of constant cross-section
In this paper, the definition of the temperature distribution field for a rod made of heat-resistant alloy EI48 is introduced. The authors consider for the study a complete rod of circular cross-section of radius R, of limited length L. Studied body is under the influence of a heat flow q from the surface over the entire cross-sectional area of the left end, and heat exchange with the environment occurs on the cross-sectional area of the right end. The rod is thermally insulated along the side surface. The authors consider two cases: the first is the heat flow with intensity q can be set on the area of a small circle with radius r