Mohammad Atif Siddiqui, Md. Nishat Anwar, Shahedul Haque Laskar
{"title":"基于简单闭环设定点实验的高阶死时间过程滑模控制器设计","authors":"Mohammad Atif Siddiqui, Md. Nishat Anwar, Shahedul Haque Laskar","doi":"10.1515/ijcre-2022-0134","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a sliding mode controller (SLMC) design approach has been proposed based on second order plus dead time process (SOPDTP). The SOPDTP model of the industrial processes have been obtained by performing a simple closed-loop set-point experiment (CLSPE) having a proportional controller only. The operating procedure of SLMC comprises of continuous and discontinuous control law. The parameters of continuous control law are derived by considering SOPDTP parameters and using the root locus technique. The discontinuous control law parameters are obtained by minimizing a performance index with the help of grasshopper optimization technique. The proposed SLMC design method has been validated by considering several examples with higher order process having diverse dynamics. The performance improvement by the proposed method over the recently reported work has been observed under nominal, perturbed and noisy conditions.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"845 - 857"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding mode controller design based on simple closed loop set point experiment for higher order processes with dead time\",\"authors\":\"Mohammad Atif Siddiqui, Md. Nishat Anwar, Shahedul Haque Laskar\",\"doi\":\"10.1515/ijcre-2022-0134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, a sliding mode controller (SLMC) design approach has been proposed based on second order plus dead time process (SOPDTP). The SOPDTP model of the industrial processes have been obtained by performing a simple closed-loop set-point experiment (CLSPE) having a proportional controller only. The operating procedure of SLMC comprises of continuous and discontinuous control law. The parameters of continuous control law are derived by considering SOPDTP parameters and using the root locus technique. The discontinuous control law parameters are obtained by minimizing a performance index with the help of grasshopper optimization technique. The proposed SLMC design method has been validated by considering several examples with higher order process having diverse dynamics. The performance improvement by the proposed method over the recently reported work has been observed under nominal, perturbed and noisy conditions.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"21 1\",\"pages\":\"845 - 857\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0134\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0134","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Sliding mode controller design based on simple closed loop set point experiment for higher order processes with dead time
Abstract In this work, a sliding mode controller (SLMC) design approach has been proposed based on second order plus dead time process (SOPDTP). The SOPDTP model of the industrial processes have been obtained by performing a simple closed-loop set-point experiment (CLSPE) having a proportional controller only. The operating procedure of SLMC comprises of continuous and discontinuous control law. The parameters of continuous control law are derived by considering SOPDTP parameters and using the root locus technique. The discontinuous control law parameters are obtained by minimizing a performance index with the help of grasshopper optimization technique. The proposed SLMC design method has been validated by considering several examples with higher order process having diverse dynamics. The performance improvement by the proposed method over the recently reported work has been observed under nominal, perturbed and noisy conditions.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.