浮力和磁场对层流涡破裂和流体层的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
B. Mahfoud, M. Moussaoui
{"title":"浮力和磁场对层流涡破裂和流体层的影响","authors":"B. Mahfoud, M. Moussaoui","doi":"10.18186/thermal.1232431","DOIUrl":null,"url":null,"abstract":"In this study, the Generalized Integral Transformation Technique (GITT) is used to describe the effect of buoyancy force and magnetic field on the vortex breakdown process generated by the rotation of an electrically conductive fluid. A magnetic field is positioned vertically to stabilize the swirling flow caused by the rotation of the bottom disc of a cylindrical recipient. Three fluids were compared in this study where the range of Richardson number is 0 ≤Ri ≤2.0. When the temperature difference is greater than Ri = 0.1, many layers become visible. These stratified flu id layers act as thermal insulators. In the case of stratification, the increased magnetic field reduces the total number of layers formed in the fluid. The influence of gradient temperature on the distribution of the layers generated is discussed. The limitations between the multilayer structure and the monolayer structure for three fluids are calculated as a function of the flow parameters.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Buoyancy force and magnetic field effects on laminar vortex breakdown and fluid layers\",\"authors\":\"B. Mahfoud, M. Moussaoui\",\"doi\":\"10.18186/thermal.1232431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the Generalized Integral Transformation Technique (GITT) is used to describe the effect of buoyancy force and magnetic field on the vortex breakdown process generated by the rotation of an electrically conductive fluid. A magnetic field is positioned vertically to stabilize the swirling flow caused by the rotation of the bottom disc of a cylindrical recipient. Three fluids were compared in this study where the range of Richardson number is 0 ≤Ri ≤2.0. When the temperature difference is greater than Ri = 0.1, many layers become visible. These stratified flu id layers act as thermal insulators. In the case of stratification, the increased magnetic field reduces the total number of layers formed in the fluid. The influence of gradient temperature on the distribution of the layers generated is discussed. The limitations between the multilayer structure and the monolayer structure for three fluids are calculated as a function of the flow parameters.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1232431\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1232431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本研究采用广义积分变换技术(GITT)来描述浮力和磁场对导电流体旋转产生的涡流击穿过程的影响。垂直放置磁场以稳定由圆柱形接收器的底部圆盘的旋转引起的涡流。本研究中比较了三种流体,其中理查森数的范围为0≤Ri≤2.0。当温度差大于Ri=0.1时,许多层变得可见。这些分层的流感病毒层起着隔热层的作用。在分层的情况下,增加的磁场减少了在流体中形成的层的总数。讨论了梯度温度对生成层分布的影响。三种流体的多层结构和单层结构之间的限制被计算为流动参数的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buoyancy force and magnetic field effects on laminar vortex breakdown and fluid layers
In this study, the Generalized Integral Transformation Technique (GITT) is used to describe the effect of buoyancy force and magnetic field on the vortex breakdown process generated by the rotation of an electrically conductive fluid. A magnetic field is positioned vertically to stabilize the swirling flow caused by the rotation of the bottom disc of a cylindrical recipient. Three fluids were compared in this study where the range of Richardson number is 0 ≤Ri ≤2.0. When the temperature difference is greater than Ri = 0.1, many layers become visible. These stratified flu id layers act as thermal insulators. In the case of stratification, the increased magnetic field reduces the total number of layers formed in the fluid. The influence of gradient temperature on the distribution of the layers generated is discussed. The limitations between the multilayer structure and the monolayer structure for three fluids are calculated as a function of the flow parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信