升力体在自由表面上和近自由表面上运动的流体动力学解的涡格法

Q3 Engineering
Raffaele Solari, P. Bagnerini, G. Vernengo
{"title":"升力体在自由表面上和近自由表面上运动的流体动力学解的涡格法","authors":"Raffaele Solari, P. Bagnerini, G. Vernengo","doi":"10.37394/232013.2022.17.4","DOIUrl":null,"url":null,"abstract":"The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Vortex Lattice Method for the Hydrodynamic Solution of Lifting Bodies Traveling Close and Across a Free Surface\",\"authors\":\"Raffaele Solari, P. Bagnerini, G. Vernengo\",\"doi\":\"10.37394/232013.2022.17.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2022.17.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2022.17.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

采用基于涡格法的势流模型分析了水下和水面穿孔提升体的流体力学性能。由于用于离散升力体边界的涡流分布,这种在空气动力学中广泛应用的数值格式特别适合于对升力效应进行建模。该方法是在特定边界条件下发展起来的,以考虑稳定自由表面波模式的发展。两种水下物体,如平板和水翼,以及滑行船体都可以进行研究。通过与现有实验数据和雷诺平均纳维-斯托克斯(RANS)方法的其他计算流体动力学(CFD)结果进行比较,验证了该方法。在所有分析的情况下,即2D和3D平板、NACA水翼、规划平板和棱柱形滑行船体,结果与作为参考的结果一致。讨论了所获得的流体动力学预测,强调了所开发方法的优点和可能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Vortex Lattice Method for the Hydrodynamic Solution of Lifting Bodies Traveling Close and Across a Free Surface
The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信