模中的近似

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
B. Davvaz, Dian Winda Setyawati, Soleha, I. Mukhlash, Subiono
{"title":"模中的近似","authors":"B. Davvaz, Dian Winda Setyawati, Soleha, I. Mukhlash, Subiono","doi":"10.2478/fcds-2021-0020","DOIUrl":null,"url":null,"abstract":"Abstract Rough set theory is a mathematical approach to imperfect knowledge. The near set approach leads to partitions of ensembles of sample objects with measurable information content and an approach to feature selection. In this paper, we apply the previous results of Bagirmaz [Appl. Algebra Engrg. Comm. Comput., 30(4) (2019) 285-29] and [Davvaz et al., Near approximations in rings. AAECC (2020). https://doi.org/10.1007/s00200-020-00421-3] to module theory. We introduce the notion of near approximations in a module over a ring, which is an extended notion of a rough approximations in a module presented in [B. Davvaz and M. Mahdavipour, Roughness in modules, Information Sciences, 176 (2006) 3658-3674]. Then we define the lower and upper near submodules and investigate their properties.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"46 1","pages":"319 - 337"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Near Approximations in Modules\",\"authors\":\"B. Davvaz, Dian Winda Setyawati, Soleha, I. Mukhlash, Subiono\",\"doi\":\"10.2478/fcds-2021-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rough set theory is a mathematical approach to imperfect knowledge. The near set approach leads to partitions of ensembles of sample objects with measurable information content and an approach to feature selection. In this paper, we apply the previous results of Bagirmaz [Appl. Algebra Engrg. Comm. Comput., 30(4) (2019) 285-29] and [Davvaz et al., Near approximations in rings. AAECC (2020). https://doi.org/10.1007/s00200-020-00421-3] to module theory. We introduce the notion of near approximations in a module over a ring, which is an extended notion of a rough approximations in a module presented in [B. Davvaz and M. Mahdavipour, Roughness in modules, Information Sciences, 176 (2006) 3658-3674]. Then we define the lower and upper near submodules and investigate their properties.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"46 1\",\"pages\":\"319 - 337\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2021-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2021-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要粗糙集理论是一种处理不完全知识的数学方法。近集方法导致具有可测量信息内容的样本对象的集合的划分以及特征选择方法。在本文中,我们应用了Bagirmaz[Appl.AlgebrageEngr.Comm.Comput.,30(4)(2019)285-29]和[Davaz et al.,环中的近似。AAECC(2020)的先前结果。https://doi.org/10.1007/s00200-020-00421-3]模块理论。我们引入了环上模中近似近似的概念,这是[B.Davivaz和M.Mahdavipour,Roughness in modules,Information Sciences,176(2006)3658-3674]中提出的模中近似的扩展概念。然后,我们定义了下近子模和上近子模,并研究了它们的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near Approximations in Modules
Abstract Rough set theory is a mathematical approach to imperfect knowledge. The near set approach leads to partitions of ensembles of sample objects with measurable information content and an approach to feature selection. In this paper, we apply the previous results of Bagirmaz [Appl. Algebra Engrg. Comm. Comput., 30(4) (2019) 285-29] and [Davvaz et al., Near approximations in rings. AAECC (2020). https://doi.org/10.1007/s00200-020-00421-3] to module theory. We introduce the notion of near approximations in a module over a ring, which is an extended notion of a rough approximations in a module presented in [B. Davvaz and M. Mahdavipour, Roughness in modules, Information Sciences, 176 (2006) 3658-3674]. Then we define the lower and upper near submodules and investigate their properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信