{"title":"用于从环境振动中获取能量的压电陶瓷","authors":"M. Zarog","doi":"10.6001/energetika.v67i1.4537","DOIUrl":null,"url":null,"abstract":"Direct piezoelectric conversion is very popular in generating power from mechanical stress. There is continuous progress in power harvesting from mechanical vibration. In this article, experimental tests on a piezoelectric circular plate, to evaluate the electric power produced by the piezoelectric conversion at low acceleration over a wide range of ambient vibration frequency, are presented. The experimental analysis is presented and discussed. The results demonstrate the potentiality of using low-cost piezoelectric diaphragms to harvest energy from ambient vibration. Under low acceleration (5.36 m/s2), the vibration frequency was varied in the range of 10– 200 Hz and the generated power was measured. Under a very small dynamic force (less than 0.06 N), the output power of 1.5 mW was obtained with an 8.5 mm drum harvester across a load resistance of 17.8 kΩ at a frequency of 173 Hz.","PeriodicalId":35639,"journal":{"name":"Energetika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectric ceramic for energy harvesting from ambient vibration\",\"authors\":\"M. Zarog\",\"doi\":\"10.6001/energetika.v67i1.4537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct piezoelectric conversion is very popular in generating power from mechanical stress. There is continuous progress in power harvesting from mechanical vibration. In this article, experimental tests on a piezoelectric circular plate, to evaluate the electric power produced by the piezoelectric conversion at low acceleration over a wide range of ambient vibration frequency, are presented. The experimental analysis is presented and discussed. The results demonstrate the potentiality of using low-cost piezoelectric diaphragms to harvest energy from ambient vibration. Under low acceleration (5.36 m/s2), the vibration frequency was varied in the range of 10– 200 Hz and the generated power was measured. Under a very small dynamic force (less than 0.06 N), the output power of 1.5 mW was obtained with an 8.5 mm drum harvester across a load resistance of 17.8 kΩ at a frequency of 173 Hz.\",\"PeriodicalId\":35639,\"journal\":{\"name\":\"Energetika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6001/energetika.v67i1.4537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6001/energetika.v67i1.4537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Piezoelectric ceramic for energy harvesting from ambient vibration
Direct piezoelectric conversion is very popular in generating power from mechanical stress. There is continuous progress in power harvesting from mechanical vibration. In this article, experimental tests on a piezoelectric circular plate, to evaluate the electric power produced by the piezoelectric conversion at low acceleration over a wide range of ambient vibration frequency, are presented. The experimental analysis is presented and discussed. The results demonstrate the potentiality of using low-cost piezoelectric diaphragms to harvest energy from ambient vibration. Under low acceleration (5.36 m/s2), the vibration frequency was varied in the range of 10– 200 Hz and the generated power was measured. Under a very small dynamic force (less than 0.06 N), the output power of 1.5 mW was obtained with an 8.5 mm drum harvester across a load resistance of 17.8 kΩ at a frequency of 173 Hz.
EnergetikaEnergy-Energy Engineering and Power Technology
CiteScore
2.10
自引率
0.00%
发文量
0
期刊介绍:
The journal publishes original scientific, review and problem papers in the following fields: power engineering economics, modelling of energy systems, their management and optimization, target systems, environmental impacts of power engineering objects, nuclear energetics, its safety, radioactive waste disposal, renewable power sources, power engineering metrology, thermal physics, aerohydrodynamics, plasma technologies, combustion processes, hydrogen energetics, material studies and technologies, hydrology, hydroenergetics. All papers are reviewed. Information is presented on the defended theses, various conferences, reviews, etc.