分数阶Bazykin-Berezovskaya模型的动力学行为及其离散化

IF 1.1 Q2 MATHEMATICS, APPLIED
M. H. Akrami
{"title":"分数阶Bazykin-Berezovskaya模型的动力学行为及其离散化","authors":"M. H. Akrami","doi":"10.22034/CMDE.2020.30802.1460","DOIUrl":null,"url":null,"abstract":"‎This paper is devoted to study dynamical behaviours of the fractional-order Bazykin-Berezovskaya model and its discretization‎. ‎The fractional derivative has been described in the Caputo sense‎. ‎We show that the discretized system‎, ‎exhibits more complicated dynamical behaviours than its corresponding fractional-order model‎. ‎Specially‎, ‎in the discretized model Neimark-Sacker and flip bifurcations and also chaos phenomena will happen‎. ‎In the final part‎, ‎some numerical simulation verify the analytical results‎.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamical behaviours of Bazykin-Berezovskaya model with fractional-order and its discretization\",\"authors\":\"M. H. Akrami\",\"doi\":\"10.22034/CMDE.2020.30802.1460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎This paper is devoted to study dynamical behaviours of the fractional-order Bazykin-Berezovskaya model and its discretization‎. ‎The fractional derivative has been described in the Caputo sense‎. ‎We show that the discretized system‎, ‎exhibits more complicated dynamical behaviours than its corresponding fractional-order model‎. ‎Specially‎, ‎in the discretized model Neimark-Sacker and flip bifurcations and also chaos phenomena will happen‎. ‎In the final part‎, ‎some numerical simulation verify the analytical results‎.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.30802.1460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.30802.1460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

‎本文研究了分数阶Bazykin-Berezovskaya模型的动力学行为及其离散化‎. ‎分数导数已经在Caputo意义上进行了描述‎. ‎我们证明了离散化系统‎, ‎表现出比相应的分数阶模型更复杂的动力学行为‎. ‎特别是‎, ‎在离散化模型中,会发生内马克-萨克尔和翻转分岔以及混沌现象‎. ‎在最后一部分‎, ‎一些数值模拟验证了分析结果‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical behaviours of Bazykin-Berezovskaya model with fractional-order and its discretization
‎This paper is devoted to study dynamical behaviours of the fractional-order Bazykin-Berezovskaya model and its discretization‎. ‎The fractional derivative has been described in the Caputo sense‎. ‎We show that the discretized system‎, ‎exhibits more complicated dynamical behaviours than its corresponding fractional-order model‎. ‎Specially‎, ‎in the discretized model Neimark-Sacker and flip bifurcations and also chaos phenomena will happen‎. ‎In the final part‎, ‎some numerical simulation verify the analytical results‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信