几乎一致域与Poincaré不等式

IF 1.1 Q1 MATHEMATICS
S. Eriksson-Bique, Jasun Gong
{"title":"几乎一致域与Poincaré不等式","authors":"S. Eriksson-Bique, Jasun Gong","doi":"10.1112/tlm3.12032","DOIUrl":null,"url":null,"abstract":"Here we show existence of many subsets of Euclidean spaces that, despite having empty interior, still support Poincaré inequalities with respect to the restricted Lebesgue measure. Most importantly, despite the explicit constructions in our proofs, our methods do not depend on any rectilinear or self‐similar structure of the underlying space. We instead employ the uniform domain condition of Martio and Sarvas. This condition relies on the measure density of such subsets, as well as the regularity and relative separation of their boundary components.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Almost uniform domains and Poincaré inequalities\",\"authors\":\"S. Eriksson-Bique, Jasun Gong\",\"doi\":\"10.1112/tlm3.12032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we show existence of many subsets of Euclidean spaces that, despite having empty interior, still support Poincaré inequalities with respect to the restricted Lebesgue measure. Most importantly, despite the explicit constructions in our proofs, our methods do not depend on any rectilinear or self‐similar structure of the underlying space. We instead employ the uniform domain condition of Martio and Sarvas. This condition relies on the measure density of such subsets, as well as the regularity and relative separation of their boundary components.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

这里我们证明了欧几里得空间的许多子集的存在性,这些子集尽管内部是空的,但仍然支持关于受限勒贝格测度的庞加莱不等式。最重要的是,尽管我们的证明中有明确的结构,但我们的方法并不依赖于底层空间的任何直线或自相似结构。我们转而采用Martio和Sarvas的一致定义域条件。这个条件依赖于这些子集的度量密度,以及它们的边界分量的规律性和相对分离性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost uniform domains and Poincaré inequalities
Here we show existence of many subsets of Euclidean spaces that, despite having empty interior, still support Poincaré inequalities with respect to the restricted Lebesgue measure. Most importantly, despite the explicit constructions in our proofs, our methods do not depend on any rectilinear or self‐similar structure of the underlying space. We instead employ the uniform domain condition of Martio and Sarvas. This condition relies on the measure density of such subsets, as well as the regularity and relative separation of their boundary components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信