局部奥尔特群和孤立差分数据准则

Pub Date : 2019-12-30 DOI:10.5802/jtnb.1200
Huy Quoc Dang, Soumya Das, K. Karagiannis, Andrew Obus, Vaidehee Thatte
{"title":"局部奥尔特群和孤立差分数据准则","authors":"Huy Quoc Dang, Soumya Das, K. Karagiannis, Andrew Obus, Vaidehee Thatte","doi":"10.5802/jtnb.1200","DOIUrl":null,"url":null,"abstract":"It is conjectured that if k is an algebraically closed field of characteristic p > 0, then any branched G-cover of smooth projective k-curves where the \"KGB\" obstruction vanishes and where a p-Sylow subgroup of G is cyclic lifts to characteristic 0. Obus has shown that this conjecture holds given the existence of certain meromorphic differential forms on P_1^k with behavior determined by the ramification data of the cover. We give a more efficient computational procedure to compute these forms than was previously known. As a consequence, we show that all D_25- and D_27-covers lift to characteristic zero.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Local Oort groups and the isolated differential data criterion\",\"authors\":\"Huy Quoc Dang, Soumya Das, K. Karagiannis, Andrew Obus, Vaidehee Thatte\",\"doi\":\"10.5802/jtnb.1200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is conjectured that if k is an algebraically closed field of characteristic p > 0, then any branched G-cover of smooth projective k-curves where the \\\"KGB\\\" obstruction vanishes and where a p-Sylow subgroup of G is cyclic lifts to characteristic 0. Obus has shown that this conjecture holds given the existence of certain meromorphic differential forms on P_1^k with behavior determined by the ramification data of the cover. We give a more efficient computational procedure to compute these forms than was previously known. As a consequence, we show that all D_25- and D_27-covers lift to characteristic zero.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们推测,如果k是特征为p > 0的代数闭域,则光滑射影k曲线的任何分支G-盖,其中“KGB”障碍消失且G的p- sylow子群循环提升到特征0。Obus证明了在P_1^k上存在某些亚纯微分形式,其行为由覆盖的分支数据决定的情况下,这个猜想成立。我们给出了一个比以前已知的更有效的计算程序来计算这些形式。因此,我们证明所有D_25-和d_27 -盖都提升到特征零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local Oort groups and the isolated differential data criterion
It is conjectured that if k is an algebraically closed field of characteristic p > 0, then any branched G-cover of smooth projective k-curves where the "KGB" obstruction vanishes and where a p-Sylow subgroup of G is cyclic lifts to characteristic 0. Obus has shown that this conjecture holds given the existence of certain meromorphic differential forms on P_1^k with behavior determined by the ramification data of the cover. We give a more efficient computational procedure to compute these forms than was previously known. As a consequence, we show that all D_25- and D_27-covers lift to characteristic zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信