Rota-Baxter-Leibniz代数的上同调、变形和扩张

Q3 Mathematics
B. Mondal, R. Saha
{"title":"Rota-Baxter-Leibniz代数的上同调、变形和扩张","authors":"B. Mondal, R. Saha","doi":"10.46298/cm.10295","DOIUrl":null,"url":null,"abstract":"A Rota-Baxter Leibniz algebra is a Leibniz algebra\n$(\\mathfrak{g},[~,~]_{\\mathfrak{g}})$ equipped with a Rota-Baxter operator $T :\n\\mathfrak{g} \\rightarrow \\mathfrak{g}$. We define representation and dual\nrepresentation of Rota-Baxter Leibniz algebras. Next, we define a cohomology\ntheory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and\nformal deformation theory of Rota-Baxter Leibniz algebras and show that our\ncohomology is deformation cohomology. Moreover, We define an abelian extension\nof Rota-Baxter Leibniz algebras and show that equivalence classes of such\nextensions are related to the cohomology groups.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras\",\"authors\":\"B. Mondal, R. Saha\",\"doi\":\"10.46298/cm.10295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Rota-Baxter Leibniz algebra is a Leibniz algebra\\n$(\\\\mathfrak{g},[~,~]_{\\\\mathfrak{g}})$ equipped with a Rota-Baxter operator $T :\\n\\\\mathfrak{g} \\\\rightarrow \\\\mathfrak{g}$. We define representation and dual\\nrepresentation of Rota-Baxter Leibniz algebras. Next, we define a cohomology\\ntheory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and\\nformal deformation theory of Rota-Baxter Leibniz algebras and show that our\\ncohomology is deformation cohomology. Moreover, We define an abelian extension\\nof Rota-Baxter Leibniz algebras and show that equivalence classes of such\\nextensions are related to the cohomology groups.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

Rota-Baxter-Leibniz代数是配备有Rota-Baxter算子$T:\mathfrak{g}\rightarrow\mathfrak{g}$的莱布尼兹代数$(\mathfrak+{g},[~,~]_{\mathfrak-{g})。我们定义了Rota-Baxter-Leibniz代数的表示和对偶表示。接下来,我们定义了Rota-Baxter-Leibniz代数的上同调代数。我们还研究了Rota-Baxter-Leibniz代数的无穷小和形式变形理论,证明了我们的上同调是变形上同调。此外,我们定义了Rota-Baxter-Leibniz代数的阿贝尔扩张,并证明了这种扩张的等价类与上同调群有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras
A Rota-Baxter Leibniz algebra is a Leibniz algebra $(\mathfrak{g},[~,~]_{\mathfrak{g}})$ equipped with a Rota-Baxter operator $T : \mathfrak{g} \rightarrow \mathfrak{g}$. We define representation and dual representation of Rota-Baxter Leibniz algebras. Next, we define a cohomology theory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and formal deformation theory of Rota-Baxter Leibniz algebras and show that our cohomology is deformation cohomology. Moreover, We define an abelian extension of Rota-Baxter Leibniz algebras and show that equivalence classes of such extensions are related to the cohomology groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信