{"title":"Rota-Baxter-Leibniz代数的上同调、变形和扩张","authors":"B. Mondal, R. Saha","doi":"10.46298/cm.10295","DOIUrl":null,"url":null,"abstract":"A Rota-Baxter Leibniz algebra is a Leibniz algebra\n$(\\mathfrak{g},[~,~]_{\\mathfrak{g}})$ equipped with a Rota-Baxter operator $T :\n\\mathfrak{g} \\rightarrow \\mathfrak{g}$. We define representation and dual\nrepresentation of Rota-Baxter Leibniz algebras. Next, we define a cohomology\ntheory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and\nformal deformation theory of Rota-Baxter Leibniz algebras and show that our\ncohomology is deformation cohomology. Moreover, We define an abelian extension\nof Rota-Baxter Leibniz algebras and show that equivalence classes of such\nextensions are related to the cohomology groups.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras\",\"authors\":\"B. Mondal, R. Saha\",\"doi\":\"10.46298/cm.10295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Rota-Baxter Leibniz algebra is a Leibniz algebra\\n$(\\\\mathfrak{g},[~,~]_{\\\\mathfrak{g}})$ equipped with a Rota-Baxter operator $T :\\n\\\\mathfrak{g} \\\\rightarrow \\\\mathfrak{g}$. We define representation and dual\\nrepresentation of Rota-Baxter Leibniz algebras. Next, we define a cohomology\\ntheory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and\\nformal deformation theory of Rota-Baxter Leibniz algebras and show that our\\ncohomology is deformation cohomology. Moreover, We define an abelian extension\\nof Rota-Baxter Leibniz algebras and show that equivalence classes of such\\nextensions are related to the cohomology groups.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras
A Rota-Baxter Leibniz algebra is a Leibniz algebra
$(\mathfrak{g},[~,~]_{\mathfrak{g}})$ equipped with a Rota-Baxter operator $T :
\mathfrak{g} \rightarrow \mathfrak{g}$. We define representation and dual
representation of Rota-Baxter Leibniz algebras. Next, we define a cohomology
theory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and
formal deformation theory of Rota-Baxter Leibniz algebras and show that our
cohomology is deformation cohomology. Moreover, We define an abelian extension
of Rota-Baxter Leibniz algebras and show that equivalence classes of such
extensions are related to the cohomology groups.
期刊介绍:
Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.