非概率调查样本的伪经验似然推理

Pub Date : 2022-07-04 DOI:10.1002/cjs.11708
Yilin Chen, Pengfei Li, J. N. K. Rao, Changbao Wu
{"title":"非概率调查样本的伪经验似然推理","authors":"Yilin Chen,&nbsp;Pengfei Li,&nbsp;J. N. K. Rao,&nbsp;Changbao Wu","doi":"10.1002/cjs.11708","DOIUrl":null,"url":null,"abstract":"<p>In this article, we first provide an overview of two major developments on complex survey data analysis: the empirical likelihood methods and statistical inference with nonprobability survey samples. We highlight the important research contributions to the field of survey sampling in general and the two topics in particular by Canadian survey statisticians. We then propose new inferential procedures for analyzing nonprobability survey samples through the pseudo empirical likelihood approach. The proposed methods lead to point estimators asymptotically equivalent to those discussed in the recent literature but with more desirable features on confidence intervals such as range-respecting and data-driven orientation. Results from a simulation study demonstrate the superiority of the proposed methods in dealing with binary response variables.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11708","citationCount":"2","resultStr":"{\"title\":\"Pseudo empirical likelihood inference for nonprobability survey samples\",\"authors\":\"Yilin Chen,&nbsp;Pengfei Li,&nbsp;J. N. K. Rao,&nbsp;Changbao Wu\",\"doi\":\"10.1002/cjs.11708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we first provide an overview of two major developments on complex survey data analysis: the empirical likelihood methods and statistical inference with nonprobability survey samples. We highlight the important research contributions to the field of survey sampling in general and the two topics in particular by Canadian survey statisticians. We then propose new inferential procedures for analyzing nonprobability survey samples through the pseudo empirical likelihood approach. The proposed methods lead to point estimators asymptotically equivalent to those discussed in the recent literature but with more desirable features on confidence intervals such as range-respecting and data-driven orientation. Results from a simulation study demonstrate the superiority of the proposed methods in dealing with binary response variables.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11708\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们首先概述了复杂调查数据分析的两个主要发展:经验似然方法和非概率调查样本的统计推断。我们强调调查抽样领域的重要研究贡献,特别是加拿大调查统计学家的两个主题。然后,我们提出了新的推理程序,通过伪经验似然方法来分析非概率调查样本。所提出的方法导致点估计渐近等价于最近文献中讨论的那些,但具有更理想的置信区间特征,如范围尊重和数据驱动的方向。仿真研究结果表明,所提方法在处理二元响应变量方面具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Pseudo empirical likelihood inference for nonprobability survey samples

In this article, we first provide an overview of two major developments on complex survey data analysis: the empirical likelihood methods and statistical inference with nonprobability survey samples. We highlight the important research contributions to the field of survey sampling in general and the two topics in particular by Canadian survey statisticians. We then propose new inferential procedures for analyzing nonprobability survey samples through the pseudo empirical likelihood approach. The proposed methods lead to point estimators asymptotically equivalent to those discussed in the recent literature but with more desirable features on confidence intervals such as range-respecting and data-driven orientation. Results from a simulation study demonstrate the superiority of the proposed methods in dealing with binary response variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信