电容式纳米排气碳粒子质量传感器的优化设计

V. S. Kulkarni, S. Chorage
{"title":"电容式纳米排气碳粒子质量传感器的优化设计","authors":"V. S. Kulkarni, S. Chorage","doi":"10.46604/peti.2023.10200","DOIUrl":null,"url":null,"abstract":"Nanometer-sized carbon particulates generated by incomplete combustion in heavy-duty vehicles are harmful to human health. A high-resolution technique is needed to detect and measure these pollutants. This study aims to optimize a capacitive sensor design for detecting and measuring particulates. Firstly, the effect of design parameters on particulate detection and sensor compliance sensitivity is investigated by using the finite element method. By comparing the simulation results with literature findings for performance validation, the sensor structure is optimized to detect lower particulate concentrations. The simulation result shows that particulate detection sensitivity has linear variations with changes in particulate mass. With optimum electrode spacing and top insulation layer thickness of 5 µm, the sensor can detect a particulate deposition of 0.033 mg/min and generate a maximum capacitance of 581 pF. Since the optimized design can measure particulate deposition at a lower range and with higher sensitivity, it is suitable to be applied to detect nanometer-sized carbon particulates.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Optimization of a Capacitive Sensor for Mass Measurement of Nanometer-Sized Exhaust Carbon Particles\",\"authors\":\"V. S. Kulkarni, S. Chorage\",\"doi\":\"10.46604/peti.2023.10200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanometer-sized carbon particulates generated by incomplete combustion in heavy-duty vehicles are harmful to human health. A high-resolution technique is needed to detect and measure these pollutants. This study aims to optimize a capacitive sensor design for detecting and measuring particulates. Firstly, the effect of design parameters on particulate detection and sensor compliance sensitivity is investigated by using the finite element method. By comparing the simulation results with literature findings for performance validation, the sensor structure is optimized to detect lower particulate concentrations. The simulation result shows that particulate detection sensitivity has linear variations with changes in particulate mass. With optimum electrode spacing and top insulation layer thickness of 5 µm, the sensor can detect a particulate deposition of 0.033 mg/min and generate a maximum capacitance of 581 pF. Since the optimized design can measure particulate deposition at a lower range and with higher sensitivity, it is suitable to be applied to detect nanometer-sized carbon particulates.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2023.10200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2023.10200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重型车辆不完全燃烧产生的纳米碳颗粒对人体健康有害。需要一种高分辨率的技术来检测和测量这些污染物。本研究旨在优化用于检测和测量颗粒物的电容式传感器设计。首先,利用有限元方法研究了设计参数对颗粒物检测和传感器柔顺性灵敏度的影响。通过将模拟结果与性能验证的文献结果进行比较,对传感器结构进行了优化,以检测较低的颗粒浓度。模拟结果表明,颗粒物检测灵敏度随颗粒物质量的变化呈线性变化。在最佳电极间距和5µm的顶部绝缘层厚度下,传感器可以检测0.033mg/min的颗粒物沉积,并产生581pF的最大电容。由于优化设计可以在较低的范围内以较高的灵敏度测量颗粒沉积,因此适用于检测纳米级碳颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Optimization of a Capacitive Sensor for Mass Measurement of Nanometer-Sized Exhaust Carbon Particles
Nanometer-sized carbon particulates generated by incomplete combustion in heavy-duty vehicles are harmful to human health. A high-resolution technique is needed to detect and measure these pollutants. This study aims to optimize a capacitive sensor design for detecting and measuring particulates. Firstly, the effect of design parameters on particulate detection and sensor compliance sensitivity is investigated by using the finite element method. By comparing the simulation results with literature findings for performance validation, the sensor structure is optimized to detect lower particulate concentrations. The simulation result shows that particulate detection sensitivity has linear variations with changes in particulate mass. With optimum electrode spacing and top insulation layer thickness of 5 µm, the sensor can detect a particulate deposition of 0.033 mg/min and generate a maximum capacitance of 581 pF. Since the optimized design can measure particulate deposition at a lower range and with higher sensitivity, it is suitable to be applied to detect nanometer-sized carbon particulates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信