直接产品的Alon–Tarsi数

Q4 Mathematics
A. Gordeev, F. Petrov
{"title":"直接产品的Alon–Tarsi数","authors":"A. Gordeev, F. Petrov","doi":"10.2140/moscow.2021.10.271","DOIUrl":null,"url":null,"abstract":"We provide a general framework on the coefficients of the graph polynomials of graphs which are Cartesian products. As a corollary, we prove that if $G=(V,E)$ is a graph with degrees of vertices $2d(v), v\\in V$, and the graph polynomial $\\prod_{(i,j)\\in E} (x_j-x_i)$ contains an ``almost central'' monomial (that means a monomial $\\prod_v x_v^{c_v}$, where $|c_v-d(v)|\\leqslant 1$ for all $v\\in V$), then the Cartesian product $G\\square C_{2n}$ is $(d(\\cdot)+2)$-choosable.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alon–Tarsi numbers of direct products\",\"authors\":\"A. Gordeev, F. Petrov\",\"doi\":\"10.2140/moscow.2021.10.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a general framework on the coefficients of the graph polynomials of graphs which are Cartesian products. As a corollary, we prove that if $G=(V,E)$ is a graph with degrees of vertices $2d(v), v\\\\in V$, and the graph polynomial $\\\\prod_{(i,j)\\\\in E} (x_j-x_i)$ contains an ``almost central'' monomial (that means a monomial $\\\\prod_v x_v^{c_v}$, where $|c_v-d(v)|\\\\leqslant 1$ for all $v\\\\in V$), then the Cartesian product $G\\\\square C_{2n}$ is $(d(\\\\cdot)+2)$-choosable.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个关于图多项式系数的一般框架,图多项式是笛卡尔乘积。作为推论,我们证明了如果$G=(V,E)$是一个顶点次数为$2d(V),V\in V$的图,并且图多项式$\prod_{(i,j)\in E}(x_j-x_i)$包含一个“几乎中心”的单项式(这意味着单项式$\prod_vx_V^{c_V}$,其中$|c_V-d(V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alon–Tarsi numbers of direct products
We provide a general framework on the coefficients of the graph polynomials of graphs which are Cartesian products. As a corollary, we prove that if $G=(V,E)$ is a graph with degrees of vertices $2d(v), v\in V$, and the graph polynomial $\prod_{(i,j)\in E} (x_j-x_i)$ contains an ``almost central'' monomial (that means a monomial $\prod_v x_v^{c_v}$, where $|c_v-d(v)|\leqslant 1$ for all $v\in V$), then the Cartesian product $G\square C_{2n}$ is $(d(\cdot)+2)$-choosable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信