Mauro Artigiani, C. Fougeron, P. Hubert, A. Skripchenko
{"title":"关于无限型双旋转的注解","authors":"Mauro Artigiani, C. Fougeron, P. Hubert, A. Skripchenko","doi":"10.1090/mosc/311","DOIUrl":null,"url":null,"abstract":"We introduce a new renormalization procedure on double rotations, which is reminiscent of the classical Rauzy induction. Using this renormalization we prove that the set of parameters which induce infinite type double rotations has Hausdorff dimension strictly smaller than \n\n \n 3\n 3\n \n\n. Moreover, we construct a natural invariant measure supported on these parameters and show that, with respect to this measure, almost all double rotations are uniquely ergodic.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A note on double rotations of infinite type\",\"authors\":\"Mauro Artigiani, C. Fougeron, P. Hubert, A. Skripchenko\",\"doi\":\"10.1090/mosc/311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new renormalization procedure on double rotations, which is reminiscent of the classical Rauzy induction. Using this renormalization we prove that the set of parameters which induce infinite type double rotations has Hausdorff dimension strictly smaller than \\n\\n \\n 3\\n 3\\n \\n\\n. Moreover, we construct a natural invariant measure supported on these parameters and show that, with respect to this measure, almost all double rotations are uniquely ergodic.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mosc/311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
We introduce a new renormalization procedure on double rotations, which is reminiscent of the classical Rauzy induction. Using this renormalization we prove that the set of parameters which induce infinite type double rotations has Hausdorff dimension strictly smaller than
3
3
. Moreover, we construct a natural invariant measure supported on these parameters and show that, with respect to this measure, almost all double rotations are uniquely ergodic.