关于无限型双旋转的注解

Q2 Mathematics
Mauro Artigiani, C. Fougeron, P. Hubert, A. Skripchenko
{"title":"关于无限型双旋转的注解","authors":"Mauro Artigiani, C. Fougeron, P. Hubert, A. Skripchenko","doi":"10.1090/mosc/311","DOIUrl":null,"url":null,"abstract":"We introduce a new renormalization procedure on double rotations, which is reminiscent of the classical Rauzy induction. Using this renormalization we prove that the set of parameters which induce infinite type double rotations has Hausdorff dimension strictly smaller than \n\n \n 3\n 3\n \n\n. Moreover, we construct a natural invariant measure supported on these parameters and show that, with respect to this measure, almost all double rotations are uniquely ergodic.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A note on double rotations of infinite type\",\"authors\":\"Mauro Artigiani, C. Fougeron, P. Hubert, A. Skripchenko\",\"doi\":\"10.1090/mosc/311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new renormalization procedure on double rotations, which is reminiscent of the classical Rauzy induction. Using this renormalization we prove that the set of parameters which induce infinite type double rotations has Hausdorff dimension strictly smaller than \\n\\n \\n 3\\n 3\\n \\n\\n. Moreover, we construct a natural invariant measure supported on these parameters and show that, with respect to this measure, almost all double rotations are uniquely ergodic.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mosc/311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

我们引入了一个关于二重旋转的新的重整化过程,这让人想起了经典的Rauzy归纳。利用这种重整化,我们证明了诱导无限型二重旋转的参数集的Hausdorff维数严格小于3。此外,我们构造了一个支持这些参数的自然不变测度,并证明了关于这个测度,几乎所有的双旋转都是唯一遍历的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on double rotations of infinite type
We introduce a new renormalization procedure on double rotations, which is reminiscent of the classical Rauzy induction. Using this renormalization we prove that the set of parameters which induce infinite type double rotations has Hausdorff dimension strictly smaller than 3 3 . Moreover, we construct a natural invariant measure supported on these parameters and show that, with respect to this measure, almost all double rotations are uniquely ergodic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信