{"title":"Kac球面上重尺度测度的混沌","authors":"R. Cortez, H. Tossounian","doi":"10.1214/23-ejp967","DOIUrl":null,"url":null,"abstract":"In this article we study a relatively novel way of constructing chaotic sequences of probability measures supported on Kac's sphere, which are obtained as the law of a vector of $N$ i.i.d. variables after it is rescaled to have unit average energy. We show that, as $N$ increases, this sequence is chaotic in the sense of Kac, with respect to the Wasserstein distance, in $L^1$, in the entropic sense, and in the Fisher information sense. For many of these results, we provide explicit rates of polynomial order in $N$. In the process, we improve a quantitative entropic chaos result of Haurey and Mischler by relaxing the finite moment requirement on the densities from order $6$ to $4+\\epsilon$.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaos for rescaled measures on Kac’s sphere\",\"authors\":\"R. Cortez, H. Tossounian\",\"doi\":\"10.1214/23-ejp967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study a relatively novel way of constructing chaotic sequences of probability measures supported on Kac's sphere, which are obtained as the law of a vector of $N$ i.i.d. variables after it is rescaled to have unit average energy. We show that, as $N$ increases, this sequence is chaotic in the sense of Kac, with respect to the Wasserstein distance, in $L^1$, in the entropic sense, and in the Fisher information sense. For many of these results, we provide explicit rates of polynomial order in $N$. In the process, we improve a quantitative entropic chaos result of Haurey and Mischler by relaxing the finite moment requirement on the densities from order $6$ to $4+\\\\epsilon$.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp967\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp967","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一种较为新颖的构造Kac球上支持的概率测度混沌序列的方法,该混沌序列是由$N$ i. id个变量的向量在重新标度为具有单位平均能量后的定律得到的。我们证明,随着N的增加,这个序列在Kac意义上是混沌的,关于Wasserstein距离,在L^1意义上,在熵意义上,在Fisher信息意义上。对于其中的许多结果,我们给出了N$中多项式阶的显式速率。在此过程中,我们通过将密度的有限矩要求从$6$放宽到$4+\epsilon$,改进了Haurey和Mischler的定量熵混沌结果。
In this article we study a relatively novel way of constructing chaotic sequences of probability measures supported on Kac's sphere, which are obtained as the law of a vector of $N$ i.i.d. variables after it is rescaled to have unit average energy. We show that, as $N$ increases, this sequence is chaotic in the sense of Kac, with respect to the Wasserstein distance, in $L^1$, in the entropic sense, and in the Fisher information sense. For many of these results, we provide explicit rates of polynomial order in $N$. In the process, we improve a quantitative entropic chaos result of Haurey and Mischler by relaxing the finite moment requirement on the densities from order $6$ to $4+\epsilon$.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.