研究Coney对伊朗东北部伊斯卡兰-梅斯-伊凡扫描过程的研究和探索。

میر علی اصغر مختاری, محمد ابراهیمی, محمدرضا قربانی
{"title":"研究Coney对伊朗东北部伊斯卡兰-梅斯-伊凡扫描过程的研究和探索。","authors":"میر علی اصغر مختاری, محمد ابراهیمی, محمدرضا قربانی","doi":"10.22067/ECONG.V8I2.37548","DOIUrl":null,"url":null,"abstract":"Introduction \nThe Avan Cu-Fe skarn is located at the southern margin of Qaradagh batholith, about 60 km north of Tabriz. The Skarn-type metasomatic alteration is the result of Qaradagh batholith intrusion into the Upper Cretaceous impure carbonates. The studied area belongs to the Central Iranian structural zone. In regional scale, the studied area is a part of the Zangezour mineralization zone in the Lesser Caucasus. Several studies (Karimzadeh Somarin and Moayed, 2002; Calagari and Hosseinzadeh, 2005; Mokhtari, 2008; Baghban Asgharinezhad, 2012; Mokhtari, 2012) including master’s theses and research programs have been done on some skarns in the Azarbaijan area considering their petrologic and mineralization aspects. However, before this study, the Avan skarn aureole has not been studied in detail. In this paper, various geological aspects of the Avan skarn including mineralogy, bi-metasomatic alteration, metasomatism and mineralization during the progressive and retrograde stages of the skarnification processes have been studied in detail. \n \nResearch Method \nThis research consists of field and laboratory studies. Field studies include preparation of the geological map, identifying the relationship between the intrusion and the skarn aureole, identifying the relationship between different parts of the skarn zone and also collecting samples for laboratory studies. Laboratory studies include petrography, mineralography and microprobe studies. Cameca SX100 Microprobe belonging to Geological Survey of the Czech Republic was used in order to determine the chemical composition of the calc-silicate minerals such as pyroxene and garnet in garnet skarn and pyroxene- garnet skarn sub-zones. \n \nDiscussion and conclusion \nQaradagh batholith is composed of discrete acid to mafic phases including gabbro, diorite, quartz diorite, quartz monzonite, quartz monzodiorite, tonalite, granodiorite, monzogranite and granite porphyry which is dominated by granodiorite-quartz monzonite. Granitoids of this batholith are metaluminus, high K calc-alkaline I-type granite (Mokhtari, 2008). The Avan Cu-Fe skarn is related to the intrusion of granodioritic-quartz monzonitic part of the Qaradagh batholith into the Upper Cretaceous flysch- type rocks consisting of biomicrite, clay limestone, marl, siltstone and mudstone. \nThe Avan skarn consists of three zones of endoskarn, exoskarn and marble. The main Cu-Fe mineralized zone is related to the exoskarn zone, which has 600 meters of length and 50 meters of thickness, respectively. The Exoskarn zone consists of garnet skarn, pyroxene-garnet skarn and ore skarn sub-zones. Garnet, belonging to ugrandite series (Ad53-89) with more than 50 percentage in volume, is the most important anhydrous calc-silicate mineral in the garnet skarn and the pyroxene-garnet skarn sub-zones. Some of the garnet crystals are zoned and their chemical composition changes toward the rim to almost pure andradite (Ad99). Clinopyroxene which has diopsidic composition (Di75-96), is another anhydrous calc-silicate mineral in the exoskarn zone with an abundance that reaches up to 50 percent in volume in pyroxene-garnet skarn sub-zone. \nThe ore skarn sub-zone is located toward the outer part of the exoskarn zone and close to the border of the marble zone. The abundance of ore minerals in this sub-zone reaches up to 50 percentage in volume and includes magnetite, hematite, pyrite, chalcopyrite, bornite, malachite and goethite among which pyrite is the most abundant. In this sub-zone, anhydrous calc-silicate minerals of garnet and clinopyroxene have undergone intensive alteration and are replaced with hydrous calc-silicate (epidote and tremolite- actinolite), oxide (magnetite and hematite) and sulfide (pyrite, chalcopyrite and bornite) minerals. \nBased on the textural and mineralogical studies, the skarnification processes in the studied area can be categorized into two main stages: 1) prograde and 2) retrograde. During the prograde stage, the heat flow of the granitoid has caused isochemical metamorphism and changing more pure limestones to marble and marlly limestones to skarnoid (metamorphism and bi-metasomatism). The high temperature magmatic fluids have caused prograde metamorphism during which anhydrous calc-silicate minerals including garnet and pyroxene have appeared. During the early retrograde stage, i.e. the mineralization sub-stage, lower temperature hydrothermal fluids have caused hydrolysis and carbonization because of which anhydrous calc-silicate minerals along with their fractures and microfractures are changed to hydrous calc-silicate (epidote and tremolite-actinolite), oxide (magnetite and hematite), sulfide (pyrite, chalcopyrite and bornite) and carbonate (calcite) minerals. During the late retrograde stage, relatively low temperature fluids have altered anhydrous and hydrous calc-silicate mineral assemblage formed during the previous stages into a very fine grained mineral assemblage including clay minerals, chlorite and iron hydroxides. \nPresence of replacement textures in ore minerals and anhydrous calc-silicate minerals accompanied with open filling textures in the anhydrous calc-silicate minerals, for example oxide and sulphide veinlets within the garnet crystals, indicate that the mentioned ore minerals have been simultaneously generated with hydrous calc-silicate minerals (epidote and tremolite-actinolite) during the early prograde stage. The presence of minor amounts of wollastonite among the mineral assemblage of the Avan skarn, intergrowth of garnet and pyroxene, absence of reaction rim between garnet and clinopyroxene and absence of replacement textures indicate that these minerals have been simultaneously generated within the temperature ranges of 430–600 oC and ƒO2 > 10-26, respectively. \n \nAcknowledgements \nThe authors are grateful to the Journal of Economic Geology reviewers and editors for their constructive suggestions to the manuscript. \n \nReference \nBaghban Asgharinezhad, S., 2012. Investigation of genesis, mineralogy and geochemistry of Fe-Cu skarn in Astamal area, NE Kharvana, Eastern Azarbaijan. MSc. Thesis, University of Tabriz, Tabriz, Iran, 185 pp. (in Persian with English abstract) \nCalagari, A.A. and Hosseinzadeh, G., 2005. The mineralogy of copper-bearing skarn to the east of the Sungun-Chay River, East-Azarbaijan, Iran. Journal of Asian Earth Sciences, 28(4-6): 423-438. \nKarimzadeh Somarin, A. and Moayed, M., 2002. Granite and gabbro-diorite associated skarn deposits of NW Iran. Ore geology reviews, 20(3-4): 127-138. \nMokhtari, M.A.A., 2008. Petrology, geochemistry and petrogenesis of Qaradagh batholith (east of Syahrood, Eastern Azarbaijan) and related skarn with considering mineralization. Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, 347 pp. (in Persian with English abstract) \nMokhtari, M.A.A., 2012. The mineralogy and petrology of the Pahnavar Fe skarn, in the Eastern Azarbaijan, NW Iran. Central European Journal of Geosciences, 4(4): 578-591.","PeriodicalId":37178,"journal":{"name":"Journal of Economic Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"مطالعه کانی شناسی و فرآیندهای اسکارنی شدن در اسکارن مس- آهن آوان، شمالخاور خاروانا، شمال باختر ایران\",\"authors\":\"میر علی اصغر مختاری, محمد ابراهیمی, محمدرضا قربانی\",\"doi\":\"10.22067/ECONG.V8I2.37548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction \\nThe Avan Cu-Fe skarn is located at the southern margin of Qaradagh batholith, about 60 km north of Tabriz. The Skarn-type metasomatic alteration is the result of Qaradagh batholith intrusion into the Upper Cretaceous impure carbonates. The studied area belongs to the Central Iranian structural zone. In regional scale, the studied area is a part of the Zangezour mineralization zone in the Lesser Caucasus. Several studies (Karimzadeh Somarin and Moayed, 2002; Calagari and Hosseinzadeh, 2005; Mokhtari, 2008; Baghban Asgharinezhad, 2012; Mokhtari, 2012) including master’s theses and research programs have been done on some skarns in the Azarbaijan area considering their petrologic and mineralization aspects. However, before this study, the Avan skarn aureole has not been studied in detail. In this paper, various geological aspects of the Avan skarn including mineralogy, bi-metasomatic alteration, metasomatism and mineralization during the progressive and retrograde stages of the skarnification processes have been studied in detail. \\n \\nResearch Method \\nThis research consists of field and laboratory studies. Field studies include preparation of the geological map, identifying the relationship between the intrusion and the skarn aureole, identifying the relationship between different parts of the skarn zone and also collecting samples for laboratory studies. Laboratory studies include petrography, mineralography and microprobe studies. Cameca SX100 Microprobe belonging to Geological Survey of the Czech Republic was used in order to determine the chemical composition of the calc-silicate minerals such as pyroxene and garnet in garnet skarn and pyroxene- garnet skarn sub-zones. \\n \\nDiscussion and conclusion \\nQaradagh batholith is composed of discrete acid to mafic phases including gabbro, diorite, quartz diorite, quartz monzonite, quartz monzodiorite, tonalite, granodiorite, monzogranite and granite porphyry which is dominated by granodiorite-quartz monzonite. Granitoids of this batholith are metaluminus, high K calc-alkaline I-type granite (Mokhtari, 2008). The Avan Cu-Fe skarn is related to the intrusion of granodioritic-quartz monzonitic part of the Qaradagh batholith into the Upper Cretaceous flysch- type rocks consisting of biomicrite, clay limestone, marl, siltstone and mudstone. \\nThe Avan skarn consists of three zones of endoskarn, exoskarn and marble. The main Cu-Fe mineralized zone is related to the exoskarn zone, which has 600 meters of length and 50 meters of thickness, respectively. The Exoskarn zone consists of garnet skarn, pyroxene-garnet skarn and ore skarn sub-zones. Garnet, belonging to ugrandite series (Ad53-89) with more than 50 percentage in volume, is the most important anhydrous calc-silicate mineral in the garnet skarn and the pyroxene-garnet skarn sub-zones. Some of the garnet crystals are zoned and their chemical composition changes toward the rim to almost pure andradite (Ad99). Clinopyroxene which has diopsidic composition (Di75-96), is another anhydrous calc-silicate mineral in the exoskarn zone with an abundance that reaches up to 50 percent in volume in pyroxene-garnet skarn sub-zone. \\nThe ore skarn sub-zone is located toward the outer part of the exoskarn zone and close to the border of the marble zone. The abundance of ore minerals in this sub-zone reaches up to 50 percentage in volume and includes magnetite, hematite, pyrite, chalcopyrite, bornite, malachite and goethite among which pyrite is the most abundant. In this sub-zone, anhydrous calc-silicate minerals of garnet and clinopyroxene have undergone intensive alteration and are replaced with hydrous calc-silicate (epidote and tremolite- actinolite), oxide (magnetite and hematite) and sulfide (pyrite, chalcopyrite and bornite) minerals. \\nBased on the textural and mineralogical studies, the skarnification processes in the studied area can be categorized into two main stages: 1) prograde and 2) retrograde. During the prograde stage, the heat flow of the granitoid has caused isochemical metamorphism and changing more pure limestones to marble and marlly limestones to skarnoid (metamorphism and bi-metasomatism). The high temperature magmatic fluids have caused prograde metamorphism during which anhydrous calc-silicate minerals including garnet and pyroxene have appeared. During the early retrograde stage, i.e. the mineralization sub-stage, lower temperature hydrothermal fluids have caused hydrolysis and carbonization because of which anhydrous calc-silicate minerals along with their fractures and microfractures are changed to hydrous calc-silicate (epidote and tremolite-actinolite), oxide (magnetite and hematite), sulfide (pyrite, chalcopyrite and bornite) and carbonate (calcite) minerals. During the late retrograde stage, relatively low temperature fluids have altered anhydrous and hydrous calc-silicate mineral assemblage formed during the previous stages into a very fine grained mineral assemblage including clay minerals, chlorite and iron hydroxides. \\nPresence of replacement textures in ore minerals and anhydrous calc-silicate minerals accompanied with open filling textures in the anhydrous calc-silicate minerals, for example oxide and sulphide veinlets within the garnet crystals, indicate that the mentioned ore minerals have been simultaneously generated with hydrous calc-silicate minerals (epidote and tremolite-actinolite) during the early prograde stage. The presence of minor amounts of wollastonite among the mineral assemblage of the Avan skarn, intergrowth of garnet and pyroxene, absence of reaction rim between garnet and clinopyroxene and absence of replacement textures indicate that these minerals have been simultaneously generated within the temperature ranges of 430–600 oC and ƒO2 > 10-26, respectively. \\n \\nAcknowledgements \\nThe authors are grateful to the Journal of Economic Geology reviewers and editors for their constructive suggestions to the manuscript. \\n \\nReference \\nBaghban Asgharinezhad, S., 2012. Investigation of genesis, mineralogy and geochemistry of Fe-Cu skarn in Astamal area, NE Kharvana, Eastern Azarbaijan. MSc. Thesis, University of Tabriz, Tabriz, Iran, 185 pp. (in Persian with English abstract) \\nCalagari, A.A. and Hosseinzadeh, G., 2005. The mineralogy of copper-bearing skarn to the east of the Sungun-Chay River, East-Azarbaijan, Iran. Journal of Asian Earth Sciences, 28(4-6): 423-438. \\nKarimzadeh Somarin, A. and Moayed, M., 2002. Granite and gabbro-diorite associated skarn deposits of NW Iran. Ore geology reviews, 20(3-4): 127-138. \\nMokhtari, M.A.A., 2008. Petrology, geochemistry and petrogenesis of Qaradagh batholith (east of Syahrood, Eastern Azarbaijan) and related skarn with considering mineralization. Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, 347 pp. (in Persian with English abstract) \\nMokhtari, M.A.A., 2012. The mineralogy and petrology of the Pahnavar Fe skarn, in the Eastern Azarbaijan, NW Iran. Central European Journal of Geosciences, 4(4): 578-591.\",\"PeriodicalId\":37178,\"journal\":{\"name\":\"Journal of Economic Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22067/ECONG.V8I2.37548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22067/ECONG.V8I2.37548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在逆行后期,相对低温的流体将前一阶段形成的无水和含水钙硅酸盐矿物组合改变为非常细粒的矿物组合,包括粘土矿物、绿泥石和氢氧化铁。矿石矿物和无水钙硅酸盐矿物中存在置换结构,无水钙硅酸盐矿石中存在开放填充结构,例如石榴石晶体中的氧化物和硫化物细脉,表明上述矿石矿物与含水钙硅酸盐矿物(绿帘石和透闪石-阳起石)在早期进积阶段同时生成。Avan矽卡岩矿物组合中存在少量硅灰石,石榴石和辉石共生,石榴石和单斜辉石之间没有反应边缘,也没有置换结构,这表明这些矿物分别在430–600°C和ƒO2>10-26的温度范围内同时生成。鸣谢作者感谢《经济地质学杂志》的审稿人和编辑对手稿提出的建设性建议。参考Baghban Asgharinezhad,S.,2012。阿扎拜詹东部哈尔瓦纳东北部Astamal地区Fe-Cu矽卡岩的成因、矿物学和地球化学研究。理学硕士。论文,大不里士大学,大不不里士,伊朗,185页(波斯语,英文摘要)Calagari,A.A.和Hosseinzadeh,G.,2005年。伊朗东阿扎拜詹Sungun Chay河以东含铜矽卡岩的矿物学。《亚洲地球科学杂志》,28(4-6):423-438。Karimzadeh Somarin,A.和Moayed,M.,2002年。伊朗西北部与花岗岩和辉长岩-闪长岩相关的矽卡岩矿床。矿石地质评论,20(3-4):127-138。Mokhtari,M.A.A.,2008年。Qaradagh岩基(Syahrood东部,Azarbaijan东部)和相关矽卡岩的岩石学、地球化学和岩石成因(考虑矿化)。博士论文,Tarbiat Modares大学,伊朗德黑兰,347页(波斯语,英文摘要)Mokhtari,M.A.A.,2012年。伊朗西北部阿扎拜詹东部帕纳瓦尔铁矽卡岩的矿物学和岩石学。《中欧地球科学杂志》,4(4):578-591。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
مطالعه کانی شناسی و فرآیندهای اسکارنی شدن در اسکارن مس- آهن آوان، شمالخاور خاروانا، شمال باختر ایران
Introduction The Avan Cu-Fe skarn is located at the southern margin of Qaradagh batholith, about 60 km north of Tabriz. The Skarn-type metasomatic alteration is the result of Qaradagh batholith intrusion into the Upper Cretaceous impure carbonates. The studied area belongs to the Central Iranian structural zone. In regional scale, the studied area is a part of the Zangezour mineralization zone in the Lesser Caucasus. Several studies (Karimzadeh Somarin and Moayed, 2002; Calagari and Hosseinzadeh, 2005; Mokhtari, 2008; Baghban Asgharinezhad, 2012; Mokhtari, 2012) including master’s theses and research programs have been done on some skarns in the Azarbaijan area considering their petrologic and mineralization aspects. However, before this study, the Avan skarn aureole has not been studied in detail. In this paper, various geological aspects of the Avan skarn including mineralogy, bi-metasomatic alteration, metasomatism and mineralization during the progressive and retrograde stages of the skarnification processes have been studied in detail. Research Method This research consists of field and laboratory studies. Field studies include preparation of the geological map, identifying the relationship between the intrusion and the skarn aureole, identifying the relationship between different parts of the skarn zone and also collecting samples for laboratory studies. Laboratory studies include petrography, mineralography and microprobe studies. Cameca SX100 Microprobe belonging to Geological Survey of the Czech Republic was used in order to determine the chemical composition of the calc-silicate minerals such as pyroxene and garnet in garnet skarn and pyroxene- garnet skarn sub-zones. Discussion and conclusion Qaradagh batholith is composed of discrete acid to mafic phases including gabbro, diorite, quartz diorite, quartz monzonite, quartz monzodiorite, tonalite, granodiorite, monzogranite and granite porphyry which is dominated by granodiorite-quartz monzonite. Granitoids of this batholith are metaluminus, high K calc-alkaline I-type granite (Mokhtari, 2008). The Avan Cu-Fe skarn is related to the intrusion of granodioritic-quartz monzonitic part of the Qaradagh batholith into the Upper Cretaceous flysch- type rocks consisting of biomicrite, clay limestone, marl, siltstone and mudstone. The Avan skarn consists of three zones of endoskarn, exoskarn and marble. The main Cu-Fe mineralized zone is related to the exoskarn zone, which has 600 meters of length and 50 meters of thickness, respectively. The Exoskarn zone consists of garnet skarn, pyroxene-garnet skarn and ore skarn sub-zones. Garnet, belonging to ugrandite series (Ad53-89) with more than 50 percentage in volume, is the most important anhydrous calc-silicate mineral in the garnet skarn and the pyroxene-garnet skarn sub-zones. Some of the garnet crystals are zoned and their chemical composition changes toward the rim to almost pure andradite (Ad99). Clinopyroxene which has diopsidic composition (Di75-96), is another anhydrous calc-silicate mineral in the exoskarn zone with an abundance that reaches up to 50 percent in volume in pyroxene-garnet skarn sub-zone. The ore skarn sub-zone is located toward the outer part of the exoskarn zone and close to the border of the marble zone. The abundance of ore minerals in this sub-zone reaches up to 50 percentage in volume and includes magnetite, hematite, pyrite, chalcopyrite, bornite, malachite and goethite among which pyrite is the most abundant. In this sub-zone, anhydrous calc-silicate minerals of garnet and clinopyroxene have undergone intensive alteration and are replaced with hydrous calc-silicate (epidote and tremolite- actinolite), oxide (magnetite and hematite) and sulfide (pyrite, chalcopyrite and bornite) minerals. Based on the textural and mineralogical studies, the skarnification processes in the studied area can be categorized into two main stages: 1) prograde and 2) retrograde. During the prograde stage, the heat flow of the granitoid has caused isochemical metamorphism and changing more pure limestones to marble and marlly limestones to skarnoid (metamorphism and bi-metasomatism). The high temperature magmatic fluids have caused prograde metamorphism during which anhydrous calc-silicate minerals including garnet and pyroxene have appeared. During the early retrograde stage, i.e. the mineralization sub-stage, lower temperature hydrothermal fluids have caused hydrolysis and carbonization because of which anhydrous calc-silicate minerals along with their fractures and microfractures are changed to hydrous calc-silicate (epidote and tremolite-actinolite), oxide (magnetite and hematite), sulfide (pyrite, chalcopyrite and bornite) and carbonate (calcite) minerals. During the late retrograde stage, relatively low temperature fluids have altered anhydrous and hydrous calc-silicate mineral assemblage formed during the previous stages into a very fine grained mineral assemblage including clay minerals, chlorite and iron hydroxides. Presence of replacement textures in ore minerals and anhydrous calc-silicate minerals accompanied with open filling textures in the anhydrous calc-silicate minerals, for example oxide and sulphide veinlets within the garnet crystals, indicate that the mentioned ore minerals have been simultaneously generated with hydrous calc-silicate minerals (epidote and tremolite-actinolite) during the early prograde stage. The presence of minor amounts of wollastonite among the mineral assemblage of the Avan skarn, intergrowth of garnet and pyroxene, absence of reaction rim between garnet and clinopyroxene and absence of replacement textures indicate that these minerals have been simultaneously generated within the temperature ranges of 430–600 oC and ƒO2 > 10-26, respectively. Acknowledgements The authors are grateful to the Journal of Economic Geology reviewers and editors for their constructive suggestions to the manuscript. Reference Baghban Asgharinezhad, S., 2012. Investigation of genesis, mineralogy and geochemistry of Fe-Cu skarn in Astamal area, NE Kharvana, Eastern Azarbaijan. MSc. Thesis, University of Tabriz, Tabriz, Iran, 185 pp. (in Persian with English abstract) Calagari, A.A. and Hosseinzadeh, G., 2005. The mineralogy of copper-bearing skarn to the east of the Sungun-Chay River, East-Azarbaijan, Iran. Journal of Asian Earth Sciences, 28(4-6): 423-438. Karimzadeh Somarin, A. and Moayed, M., 2002. Granite and gabbro-diorite associated skarn deposits of NW Iran. Ore geology reviews, 20(3-4): 127-138. Mokhtari, M.A.A., 2008. Petrology, geochemistry and petrogenesis of Qaradagh batholith (east of Syahrood, Eastern Azarbaijan) and related skarn with considering mineralization. Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, 347 pp. (in Persian with English abstract) Mokhtari, M.A.A., 2012. The mineralogy and petrology of the Pahnavar Fe skarn, in the Eastern Azarbaijan, NW Iran. Central European Journal of Geosciences, 4(4): 578-591.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Economic Geology
Journal of Economic Geology Earth and Planetary Sciences-Economic Geology
CiteScore
0.60
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信