扩展双曲空间中线段的中点坐标

IF 0.4 Q4 MATHEMATICS
L. Romakina
{"title":"扩展双曲空间中线段的中点坐标","authors":"L. Romakina","doi":"10.36890/iejg.1270550","DOIUrl":null,"url":null,"abstract":"In this article, we find an analytical characteristic of the type of a line and derive the formulae for calculating the coordinates of the midpoints and quasi-midpoints of elliptic, hyperbolic, and parabolic segments in an extended hyperbolic space $H^3$ in the frame of the first type. The space $H^3$ we consider in the Cayley\\,--\\,Klein projective model as a projective three-dimensional space with an oval quadric $\\gamma$ fixed in it.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinates of the Midpoint of a Segment in an Extended Hyperbolic Space\",\"authors\":\"L. Romakina\",\"doi\":\"10.36890/iejg.1270550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we find an analytical characteristic of the type of a line and derive the formulae for calculating the coordinates of the midpoints and quasi-midpoints of elliptic, hyperbolic, and parabolic segments in an extended hyperbolic space $H^3$ in the frame of the first type. The space $H^3$ we consider in the Cayley\\\\,--\\\\,Klein projective model as a projective three-dimensional space with an oval quadric $\\\\gamma$ fixed in it.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1270550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1270550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们发现了线类型的一个解析特征,并导出了在第一类框架中的扩展双曲空间$H^3$中椭圆、双曲和抛物段的中点和拟中点坐标的计算公式。在Cayley\,--\,Klein投影模型中,我们认为空间$H^3$是一个固定有椭圆二次曲面$\gamma$的投影三维空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinates of the Midpoint of a Segment in an Extended Hyperbolic Space
In this article, we find an analytical characteristic of the type of a line and derive the formulae for calculating the coordinates of the midpoints and quasi-midpoints of elliptic, hyperbolic, and parabolic segments in an extended hyperbolic space $H^3$ in the frame of the first type. The space $H^3$ we consider in the Cayley\,--\,Klein projective model as a projective three-dimensional space with an oval quadric $\gamma$ fixed in it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信