预测死亡率的模型叠加法

IF 1.4 Q3 BUSINESS, FINANCE
Jackie Li
{"title":"预测死亡率的模型叠加法","authors":"Jackie Li","doi":"10.1080/10920277.2022.2108453","DOIUrl":null,"url":null,"abstract":"This article adopts a machine learning method called stacked generalization for forecasting mortality. The main idea is to combine the forecasts from different projection models or algorithms in a certain way in order to increase the prediction accuracy. In particular, the article considers not just the traditionally used mortality projection models, such as the Lee–Carter and CBD models and their extensions, but also some learning algorithms called feedforward and recurrent neural networks that are starting to gain attention in the actuarial literature. For blending the different forecasts, the article examines a number of choices, including simple averaging, weighted averaging, linear regression, and neural network. Using U.S. mortality data, it is found that the proposed stacking approach often outperforms the cases where a projection model or algorithm is applied individually, and that neural networks tend to generate better results than many of the traditional models.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":"27 1","pages":"530 - 545"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Model Stacking Approach for Forecasting Mortality\",\"authors\":\"Jackie Li\",\"doi\":\"10.1080/10920277.2022.2108453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article adopts a machine learning method called stacked generalization for forecasting mortality. The main idea is to combine the forecasts from different projection models or algorithms in a certain way in order to increase the prediction accuracy. In particular, the article considers not just the traditionally used mortality projection models, such as the Lee–Carter and CBD models and their extensions, but also some learning algorithms called feedforward and recurrent neural networks that are starting to gain attention in the actuarial literature. For blending the different forecasts, the article examines a number of choices, including simple averaging, weighted averaging, linear regression, and neural network. Using U.S. mortality data, it is found that the proposed stacking approach often outperforms the cases where a projection model or algorithm is applied individually, and that neural networks tend to generate better results than many of the traditional models.\",\"PeriodicalId\":46812,\"journal\":{\"name\":\"North American Actuarial Journal\",\"volume\":\"27 1\",\"pages\":\"530 - 545\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2022.2108453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2108453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

摘要

本文采用一种称为堆叠泛化的机器学习方法来预测死亡率。其主要思想是将不同预测模型或算法的预测以某种方式组合起来,以提高预测精度。特别是,这篇文章不仅考虑了传统上使用的死亡率预测模型,如Lee-Carter和CBD模型及其扩展,还考虑了一些被称为前馈和循环神经网络的学习算法,这些算法开始在精算文献中受到关注。为了混合不同的预测,本文研究了许多选择,包括简单平均、加权平均、线性回归和神经网络。使用美国死亡率数据,我们发现,所提出的叠加方法通常优于单独应用投影模型或算法的情况,并且神经网络往往比许多传统模型产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Stacking Approach for Forecasting Mortality
This article adopts a machine learning method called stacked generalization for forecasting mortality. The main idea is to combine the forecasts from different projection models or algorithms in a certain way in order to increase the prediction accuracy. In particular, the article considers not just the traditionally used mortality projection models, such as the Lee–Carter and CBD models and their extensions, but also some learning algorithms called feedforward and recurrent neural networks that are starting to gain attention in the actuarial literature. For blending the different forecasts, the article examines a number of choices, including simple averaging, weighted averaging, linear regression, and neural network. Using U.S. mortality data, it is found that the proposed stacking approach often outperforms the cases where a projection model or algorithm is applied individually, and that neural networks tend to generate better results than many of the traditional models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信