最优运输中自由边界的C2,α$C^{2,\alpha}$正则性

IF 3.1 1区 数学 Q1 MATHEMATICS
Shibing Chen, Jiakun Liu, Xu-Jia Wang
{"title":"最优运输中自由边界的C2,α$C^{2,\\alpha}$正则性","authors":"Shibing Chen,&nbsp;Jiakun Liu,&nbsp;Xu-Jia Wang","doi":"10.1002/cpa.22151","DOIUrl":null,"url":null,"abstract":"<p>The regularity of the free boundary in optimal transportation is equivalent to that of the potential function along the free boundary. By establishing new geometric estimates of the free boundary and studying the second boundary value problem of the Monge-Ampère equation, we obtain the <math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <annotation>$C^{2,\\alpha }$</annotation>\n </semantics></math> regularity of the potential function as well as that of the free boundary, thereby resolve an open problem raised by Caffarelli and McCann.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C\\n \\n 2\\n ,\\n α\\n \\n \\n $C^{2,\\\\alpha }$\\n regularity of free boundaries in optimal transportation\",\"authors\":\"Shibing Chen,&nbsp;Jiakun Liu,&nbsp;Xu-Jia Wang\",\"doi\":\"10.1002/cpa.22151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The regularity of the free boundary in optimal transportation is equivalent to that of the potential function along the free boundary. By establishing new geometric estimates of the free boundary and studying the second boundary value problem of the Monge-Ampère equation, we obtain the <math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <annotation>$C^{2,\\\\alpha }$</annotation>\\n </semantics></math> regularity of the potential function as well as that of the free boundary, thereby resolve an open problem raised by Caffarelli and McCann.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22151\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22151","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最优输运中自由边界的规律性等同于沿自由边界的势函数的规律性。通过建立新的自由边界几何估计和研究Monge - ampetrre方程的第二边值问题,我们得到了势函数和自由边界的正则性,从而解决了Caffarelli和McCann提出的一个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C 2 , α $C^{2,\alpha }$ regularity of free boundaries in optimal transportation

The regularity of the free boundary in optimal transportation is equivalent to that of the potential function along the free boundary. By establishing new geometric estimates of the free boundary and studying the second boundary value problem of the Monge-Ampère equation, we obtain the C 2 , α $C^{2,\alpha }$ regularity of the potential function as well as that of the free boundary, thereby resolve an open problem raised by Caffarelli and McCann.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信