Jeong-Yeon Park, Dong-won Lee, Sunray Lee, Dong-Mok Lee, Jienny Lee, Hyun-sook Park, G. Yoon
{"title":"低温贮藏容器空气循环条件下温度平衡率与细胞生长/活力的比较","authors":"Jeong-Yeon Park, Dong-won Lee, Sunray Lee, Dong-Mok Lee, Jienny Lee, Hyun-sook Park, G. Yoon","doi":"10.1115/1.4054833","DOIUrl":null,"url":null,"abstract":"\n With advances in biotechnology, the field of cryopreservation has been continuously developed and improved. Typical cryo-container was designed with minimal flow to avoid possible structural defects in LN2 tank, which has a higher thermal conductivity than vapor nitrogen tank. If cells are placed in typical cryo-container and stored in VN2 tank, cross-contamination can be prevented, but the cell viability after thawing may be reduced. The structure of typical cryo-containers are not optimized for vaporized nitrogen to flow quickly into the container and its circulation well. Therefore, we proposed new cryo-container models that can maintain mechanical strength while optimizing the fluid flow structure, and performed thermal-structural coupled field analysis on cryo-containers. We confirmed the cryo-containers by comparing the equivalent stress distributions formed around through holes and evaluating thermal equilibrium in the cryogenic steady state through flow analysis. Prototype cryo-containers and typical cryo-containers were placed in VN2 tank for a period of time to observe temperature changes. As a result, the time it takes to reach the temperature equilibrium has been reduced to 55% level compared with the typical cryo-containers. Additionally, C2C12 and hADMSC cells were checked after storage under two temperature conditions (-80 and -196°C). In both cell, viability, adhesion and relative cell proliferation were improved by up to 15-20% in new containers compared to typical products. The developed container is expected to maintain stability well by being applied to storage and transportation of advanced medicines that require cryopreservation.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Temperature Equilibrium Rate and Cell Growth/Viability Under Air Circulation in Cryogenic Storage Container\",\"authors\":\"Jeong-Yeon Park, Dong-won Lee, Sunray Lee, Dong-Mok Lee, Jienny Lee, Hyun-sook Park, G. Yoon\",\"doi\":\"10.1115/1.4054833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With advances in biotechnology, the field of cryopreservation has been continuously developed and improved. Typical cryo-container was designed with minimal flow to avoid possible structural defects in LN2 tank, which has a higher thermal conductivity than vapor nitrogen tank. If cells are placed in typical cryo-container and stored in VN2 tank, cross-contamination can be prevented, but the cell viability after thawing may be reduced. The structure of typical cryo-containers are not optimized for vaporized nitrogen to flow quickly into the container and its circulation well. Therefore, we proposed new cryo-container models that can maintain mechanical strength while optimizing the fluid flow structure, and performed thermal-structural coupled field analysis on cryo-containers. We confirmed the cryo-containers by comparing the equivalent stress distributions formed around through holes and evaluating thermal equilibrium in the cryogenic steady state through flow analysis. Prototype cryo-containers and typical cryo-containers were placed in VN2 tank for a period of time to observe temperature changes. As a result, the time it takes to reach the temperature equilibrium has been reduced to 55% level compared with the typical cryo-containers. Additionally, C2C12 and hADMSC cells were checked after storage under two temperature conditions (-80 and -196°C). In both cell, viability, adhesion and relative cell proliferation were improved by up to 15-20% in new containers compared to typical products. The developed container is expected to maintain stability well by being applied to storage and transportation of advanced medicines that require cryopreservation.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054833\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054833","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comparison of Temperature Equilibrium Rate and Cell Growth/Viability Under Air Circulation in Cryogenic Storage Container
With advances in biotechnology, the field of cryopreservation has been continuously developed and improved. Typical cryo-container was designed with minimal flow to avoid possible structural defects in LN2 tank, which has a higher thermal conductivity than vapor nitrogen tank. If cells are placed in typical cryo-container and stored in VN2 tank, cross-contamination can be prevented, but the cell viability after thawing may be reduced. The structure of typical cryo-containers are not optimized for vaporized nitrogen to flow quickly into the container and its circulation well. Therefore, we proposed new cryo-container models that can maintain mechanical strength while optimizing the fluid flow structure, and performed thermal-structural coupled field analysis on cryo-containers. We confirmed the cryo-containers by comparing the equivalent stress distributions formed around through holes and evaluating thermal equilibrium in the cryogenic steady state through flow analysis. Prototype cryo-containers and typical cryo-containers were placed in VN2 tank for a period of time to observe temperature changes. As a result, the time it takes to reach the temperature equilibrium has been reduced to 55% level compared with the typical cryo-containers. Additionally, C2C12 and hADMSC cells were checked after storage under two temperature conditions (-80 and -196°C). In both cell, viability, adhesion and relative cell proliferation were improved by up to 15-20% in new containers compared to typical products. The developed container is expected to maintain stability well by being applied to storage and transportation of advanced medicines that require cryopreservation.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.