形式幂级数环和有限链环上的复合G-码

Q3 Mathematics
Adrian Korban
{"title":"形式幂级数环和有限链环上的复合G-码","authors":"Adrian Korban","doi":"10.13069/JACODESMATH.935951","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the work done on $G$-codes over formal power series rings and finite chain rings $\\mathbb{F}_q[t]/(t^i)$, to composite $G$-codes over the same alphabets. We define composite $G$-codes over the infinite ring $R_\\infty$ as ideals in the group ring $R_\\infty G.$ We show that the dual of a composite $G$-code is again a composite $G$-code in this setting. We extend the known results on projections and lifts of $G$-codes over the finite chain rings and over the formal power series rings to composite $G$-codes. Additionally, we extend some known results on $\\gamma$-adic $G$-codes over $R_\\infty$ to composite $G$-codes and study these codes over principal ideal rings.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite G-codes over formal power series rings and finite chain rings\",\"authors\":\"Adrian Korban\",\"doi\":\"10.13069/JACODESMATH.935951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the work done on $G$-codes over formal power series rings and finite chain rings $\\\\mathbb{F}_q[t]/(t^i)$, to composite $G$-codes over the same alphabets. We define composite $G$-codes over the infinite ring $R_\\\\infty$ as ideals in the group ring $R_\\\\infty G.$ We show that the dual of a composite $G$-code is again a composite $G$-code in this setting. We extend the known results on projections and lifts of $G$-codes over the finite chain rings and over the formal power series rings to composite $G$-codes. Additionally, we extend some known results on $\\\\gamma$-adic $G$-codes over $R_\\\\infty$ to composite $G$-codes and study these codes over principal ideal rings.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.935951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.935951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文将$G$-码的工作推广到形式幂级数环和有限链环$\mathbb上{F}_q[t] /(t^i)$,以在相同的字母表上合成$G$代码。我们将无限环$R_\infty$上的复合$G$-码定义为群环$R_\ inftyG.$中的理想。我们证明了复合$G$码的对偶在该设置中也是复合$G$S码。我们将$G$-码在有限链环和形式幂级数环上的投影和提升的已知结果推广到复合$G$码。此外,我们将$R_\infty$上$\gamma$-adic$G$-码的一些已知结果推广到复合$G$码,并研究了主理想环上的这些码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite G-codes over formal power series rings and finite chain rings
In this paper, we extend the work done on $G$-codes over formal power series rings and finite chain rings $\mathbb{F}_q[t]/(t^i)$, to composite $G$-codes over the same alphabets. We define composite $G$-codes over the infinite ring $R_\infty$ as ideals in the group ring $R_\infty G.$ We show that the dual of a composite $G$-code is again a composite $G$-code in this setting. We extend the known results on projections and lifts of $G$-codes over the finite chain rings and over the formal power series rings to composite $G$-codes. Additionally, we extend some known results on $\gamma$-adic $G$-codes over $R_\infty$ to composite $G$-codes and study these codes over principal ideal rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信