童话和水晶同伴,我

Pub Date : 2018-11-01 DOI:10.46298/epiga.2022.6820
K. Kedlaya
{"title":"童话和水晶同伴,我","authors":"K. Kedlaya","doi":"10.46298/epiga.2022.6820","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth scheme over a finite field of characteristic $p$.\nConsider the coefficient objects of locally constant rank on $X$ in $\\ell$-adic\nWeil cohomology: these are lisse Weil sheaves in \\'etale cohomology when $\\ell\n\\neq p$, and overconvergent $F$-isocrystals in rigid cohomology when $\\ell=p$.\nUsing the Langlands correspondence for global function fields in both the\n\\'etale and crystalline settings (work of Lafforgue and Abe, respectively), one\nsees that on a curve, any coefficient object in one category has \"companions\"\nin the other categories with matching characteristic polynomials of Frobenius\nat closed points. A similar statement is expected for general $X$; building on\nwork of Deligne, Drinfeld showed that any \\'etale coefficient object has\n\\'etale companions. We adapt Drinfeld's method to show that any crystalline\ncoefficient object has \\'etale companions; this has been shown independently by\nAbe--Esnault. We also prove some auxiliary results relevant for the\nconstruction of crystalline companions of \\'etale coefficient objects; this\nsubject will be pursued in a subsequent paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Etale and crystalline companions, I\",\"authors\":\"K. Kedlaya\",\"doi\":\"10.46298/epiga.2022.6820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth scheme over a finite field of characteristic $p$.\\nConsider the coefficient objects of locally constant rank on $X$ in $\\\\ell$-adic\\nWeil cohomology: these are lisse Weil sheaves in \\\\'etale cohomology when $\\\\ell\\n\\\\neq p$, and overconvergent $F$-isocrystals in rigid cohomology when $\\\\ell=p$.\\nUsing the Langlands correspondence for global function fields in both the\\n\\\\'etale and crystalline settings (work of Lafforgue and Abe, respectively), one\\nsees that on a curve, any coefficient object in one category has \\\"companions\\\"\\nin the other categories with matching characteristic polynomials of Frobenius\\nat closed points. A similar statement is expected for general $X$; building on\\nwork of Deligne, Drinfeld showed that any \\\\'etale coefficient object has\\n\\\\'etale companions. We adapt Drinfeld's method to show that any crystalline\\ncoefficient object has \\\\'etale companions; this has been shown independently by\\nAbe--Esnault. We also prove some auxiliary results relevant for the\\nconstruction of crystalline companions of \\\\'etale coefficient objects; this\\nsubject will be pursued in a subsequent paper.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2022.6820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.6820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

设$X$是特征$p$的有限域上的光滑格式。考虑$\ well $-adicWeil上同调中$X$上的局部常秩系数对象:当$\ well \neq p$时,它们是$\ well \neq p$上同调中的lisse Weil束,当$\ well =p$时,它们是刚性上同调中的过收敛$F$-同晶。利用在椭圆和晶体环境下的全局函数场的朗兰兹对应(分别是Lafforgue和Abe的工作),人们看到在曲线上,一个类别中的任何系数对象在具有匹配的Frobeniusat闭点特征多项式的其他类别中都有“同伴”。一般$X$也有类似的语句;在Deligne的基础上,Drinfeld证明了任何一个具有固定系数的物体都有固定的伴体。我们采用了德林菲尔德的方法来证明任何晶体效率的物体都有其固定的伴星;这已经由abe -Esnault独立证明。我们还证明了一些与构造虚系数物体的晶体伴体有关的辅助结果;这个问题将在以后的论文中讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Etale and crystalline companions, I
Let $X$ be a smooth scheme over a finite field of characteristic $p$. Consider the coefficient objects of locally constant rank on $X$ in $\ell$-adic Weil cohomology: these are lisse Weil sheaves in \'etale cohomology when $\ell \neq p$, and overconvergent $F$-isocrystals in rigid cohomology when $\ell=p$. Using the Langlands correspondence for global function fields in both the \'etale and crystalline settings (work of Lafforgue and Abe, respectively), one sees that on a curve, any coefficient object in one category has "companions" in the other categories with matching characteristic polynomials of Frobenius at closed points. A similar statement is expected for general $X$; building on work of Deligne, Drinfeld showed that any \'etale coefficient object has \'etale companions. We adapt Drinfeld's method to show that any crystalline coefficient object has \'etale companions; this has been shown independently by Abe--Esnault. We also prove some auxiliary results relevant for the construction of crystalline companions of \'etale coefficient objects; this subject will be pursued in a subsequent paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信