{"title":"Osprey优化算法:一种求解工程优化问题的新的仿生元启发式算法","authors":"Mohammad Dehghani, P. Trojovský","doi":"10.3389/fmech.2022.1126450","DOIUrl":null,"url":null,"abstract":"This paper introduces a new metaheuristic algorithm named the Osprey Optimization Algorithm (OOA), which imitates the behavior of osprey in nature. The fundamental inspiration of OOA is the strategy of ospreys when hunting fish from the seas. In this hunting strategy, the osprey hunts the prey after detecting its position, then carries it to a suitable position to eat it. The proposed approach of OOA in two phases of exploration and exploitation is mathematically modeled based on the simulation of the natural behavior of ospreys during the hunting process. The performance of OOA has been evaluated in the optimization of twenty-nine standard benchmark functions from the CEC 2017 test suite. Furthermore, the performance of OOA is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed OOA has provided superior performance compared to competitor algorithms by maintaining the balance between exploration and exploitation. In addition, the implementation of OOA on twenty-two real-world constrained optimization problems from the CEC 2011 test suite shows the high capability of the proposed approach in optimizing real-world applications.","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems\",\"authors\":\"Mohammad Dehghani, P. Trojovský\",\"doi\":\"10.3389/fmech.2022.1126450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new metaheuristic algorithm named the Osprey Optimization Algorithm (OOA), which imitates the behavior of osprey in nature. The fundamental inspiration of OOA is the strategy of ospreys when hunting fish from the seas. In this hunting strategy, the osprey hunts the prey after detecting its position, then carries it to a suitable position to eat it. The proposed approach of OOA in two phases of exploration and exploitation is mathematically modeled based on the simulation of the natural behavior of ospreys during the hunting process. The performance of OOA has been evaluated in the optimization of twenty-nine standard benchmark functions from the CEC 2017 test suite. Furthermore, the performance of OOA is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed OOA has provided superior performance compared to competitor algorithms by maintaining the balance between exploration and exploitation. In addition, the implementation of OOA on twenty-two real-world constrained optimization problems from the CEC 2011 test suite shows the high capability of the proposed approach in optimizing real-world applications.\",\"PeriodicalId\":48635,\"journal\":{\"name\":\"Frontiers of Mechanical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fmech.2022.1126450\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fmech.2022.1126450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
This paper introduces a new metaheuristic algorithm named the Osprey Optimization Algorithm (OOA), which imitates the behavior of osprey in nature. The fundamental inspiration of OOA is the strategy of ospreys when hunting fish from the seas. In this hunting strategy, the osprey hunts the prey after detecting its position, then carries it to a suitable position to eat it. The proposed approach of OOA in two phases of exploration and exploitation is mathematically modeled based on the simulation of the natural behavior of ospreys during the hunting process. The performance of OOA has been evaluated in the optimization of twenty-nine standard benchmark functions from the CEC 2017 test suite. Furthermore, the performance of OOA is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed OOA has provided superior performance compared to competitor algorithms by maintaining the balance between exploration and exploitation. In addition, the implementation of OOA on twenty-two real-world constrained optimization problems from the CEC 2011 test suite shows the high capability of the proposed approach in optimizing real-world applications.
期刊介绍:
Frontiers of Mechanical Engineering is an international peer-reviewed academic journal sponsored by the Ministry of Education of China. The journal seeks to provide a forum for a broad blend of high-quality academic papers in order to promote rapid communication and exchange between researchers, scientists, and engineers in the field of mechanical engineering. The journal publishes original research articles, review articles and feature articles.