边缘化学对储能装置用石墨烯基混合电极材料的影响

IF 2.2 4区 工程技术 Q3 ELECTROCHEMISTRY
Hyo-Young Kim, Ji-Woo Park, Seo Jeong Yoon, In‐Yup Jeon, Young-Wan Ju
{"title":"边缘化学对储能装置用石墨烯基混合电极材料的影响","authors":"Hyo-Young Kim, Ji-Woo Park, Seo Jeong Yoon, In‐Yup Jeon, Young-Wan Ju","doi":"10.33961/jecst.2022.00619","DOIUrl":null,"url":null,"abstract":"Owing to the rapid climate change, a high-performance energy storage system (ESS) for efficient energy consumption has been receiving considerable attention. ESS, such as capacitors, usually has issues with the ion diffusion of electrode materials, resulting in a decrease in their capacitance. Notably, appropriate pore diameter and large specific surface area (SSA) may result in an effective ion diffusion. Therefore, graphene and multi-walled carbon nanotube (graphene@MWCNT) hybrid nanomaterials, with covalent bonds between the graphene and MWCNT, were prepared via an edge-chemistry reaction. The properties of these materials, such as high porosity, large SSA, and high electroconductivity, make them suitable to be used as electrode materials for capacitors. The optimal ratio of graphene to MWCNT can affect the electrochemical performance of the electrode material based on its physical and electrochemical properties. The supercapacitor using optimal graphene-based hybrid electrode material exhibited highest specific capacitance value as 158 F/g and excellent cycle stability.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Edge-Chemistry on Graphene-Based Hybrid Electrode Materials for Energy Storage Device\",\"authors\":\"Hyo-Young Kim, Ji-Woo Park, Seo Jeong Yoon, In‐Yup Jeon, Young-Wan Ju\",\"doi\":\"10.33961/jecst.2022.00619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the rapid climate change, a high-performance energy storage system (ESS) for efficient energy consumption has been receiving considerable attention. ESS, such as capacitors, usually has issues with the ion diffusion of electrode materials, resulting in a decrease in their capacitance. Notably, appropriate pore diameter and large specific surface area (SSA) may result in an effective ion diffusion. Therefore, graphene and multi-walled carbon nanotube (graphene@MWCNT) hybrid nanomaterials, with covalent bonds between the graphene and MWCNT, were prepared via an edge-chemistry reaction. The properties of these materials, such as high porosity, large SSA, and high electroconductivity, make them suitable to be used as electrode materials for capacitors. The optimal ratio of graphene to MWCNT can affect the electrochemical performance of the electrode material based on its physical and electrochemical properties. The supercapacitor using optimal graphene-based hybrid electrode material exhibited highest specific capacitance value as 158 F/g and excellent cycle stability.\",\"PeriodicalId\":15542,\"journal\":{\"name\":\"Journal of electrochemical science and technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electrochemical science and technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33961/jecst.2022.00619\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrochemical science and technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33961/jecst.2022.00619","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

由于气候的快速变化,用于高效能源消耗的高性能储能系统(ESS)受到了相当大的关注。ESS,如电容器,通常存在电极材料的离子扩散问题,导致其电容降低。值得注意的是,适当的孔径和大的比表面积(SSA)可以导致有效的离子扩散。因此,石墨烯和多壁碳纳米管(graphene@MWCNT)通过边缘化学反应制备了石墨烯和MWCNT之间具有共价键的杂化纳米材料。这些材料的特性,如高孔隙率、大SSA和高导电性,使它们适合用作电容器的电极材料。石墨烯与MWCNT的最佳比例可以基于电极材料的物理和电化学性能影响其电化学性能。使用最佳石墨烯基混合电极材料的超级电容器表现出最高的比电容值158F/g和优异的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Edge-Chemistry on Graphene-Based Hybrid Electrode Materials for Energy Storage Device
Owing to the rapid climate change, a high-performance energy storage system (ESS) for efficient energy consumption has been receiving considerable attention. ESS, such as capacitors, usually has issues with the ion diffusion of electrode materials, resulting in a decrease in their capacitance. Notably, appropriate pore diameter and large specific surface area (SSA) may result in an effective ion diffusion. Therefore, graphene and multi-walled carbon nanotube (graphene@MWCNT) hybrid nanomaterials, with covalent bonds between the graphene and MWCNT, were prepared via an edge-chemistry reaction. The properties of these materials, such as high porosity, large SSA, and high electroconductivity, make them suitable to be used as electrode materials for capacitors. The optimal ratio of graphene to MWCNT can affect the electrochemical performance of the electrode material based on its physical and electrochemical properties. The supercapacitor using optimal graphene-based hybrid electrode material exhibited highest specific capacitance value as 158 F/g and excellent cycle stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
8.10%
发文量
44
期刊介绍: Covering fields: - Batteries and Energy Storage - Biological Electrochemistry - Corrosion Science and Technology - Electroanalytical Chemistry and Sensor Technology - Electrocatalysis - Electrochemical Capacitors & Supercapcitors - Electrochemical Engineering - Electrodeposition and Surface Treatment - Environmental Science and Technology - Fuel Cells - Material Electrochemistry - Molecular Electrochemistry and Organic Electrochemistry - Physical Electrochemistry - Solar Energy Conversion and Photoelectrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信