低维贝塞尔过程的SDEs和路径相关扩展

Pub Date : 2022-11-09 DOI:10.30757/alea.v20-41
A. Ohashi, Francesco G. Russo, Alan Teixeira
{"title":"低维贝塞尔过程的SDEs和路径相关扩展","authors":"A. Ohashi, Francesco G. Russo, Alan Teixeira","doi":"10.30757/alea.v20-41","DOIUrl":null,"url":null,"abstract":"The Bessel process in low dimension (0 $\\le$ $\\delta$ $\\le$ 1) is not an It{\\^o} process and it is a semimartingale only in the cases $\\delta$ = 1 and $\\delta$ = 0. In this paper we first characterize it as the unique solution of an SDE with distributional drift or more precisely its related martingale problem. In a second part, we introduce a suitable notion of path-dependent Bessel processes and we characterize them as solutions of path-dependent SDEs with distributional drift.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On SDEs for Bessel Processes in low dimension and path-dependent extensions\",\"authors\":\"A. Ohashi, Francesco G. Russo, Alan Teixeira\",\"doi\":\"10.30757/alea.v20-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bessel process in low dimension (0 $\\\\le$ $\\\\delta$ $\\\\le$ 1) is not an It{\\\\^o} process and it is a semimartingale only in the cases $\\\\delta$ = 1 and $\\\\delta$ = 0. In this paper we first characterize it as the unique solution of an SDE with distributional drift or more precisely its related martingale problem. In a second part, we introduce a suitable notion of path-dependent Bessel processes and we characterize them as solutions of path-dependent SDEs with distributional drift.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

低维(0$\le$$\delta$$\le$1)中的贝塞尔过程不是It{\^o}过程,并且它仅在$\delta$=1和$\delta$=0的情况下是半鞅。在本文中,我们首先将其描述为具有分布漂移的SDE的唯一解,或者更准确地说,是其相关的鞅问题。在第二部分中,我们引入了路径相关贝塞尔过程的一个合适的概念,并将其描述为具有分布漂移的路径相关SDE的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On SDEs for Bessel Processes in low dimension and path-dependent extensions
The Bessel process in low dimension (0 $\le$ $\delta$ $\le$ 1) is not an It{\^o} process and it is a semimartingale only in the cases $\delta$ = 1 and $\delta$ = 0. In this paper we first characterize it as the unique solution of an SDE with distributional drift or more precisely its related martingale problem. In a second part, we introduce a suitable notion of path-dependent Bessel processes and we characterize them as solutions of path-dependent SDEs with distributional drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信