{"title":"脂环族胺固化双酚A环氧树脂淬火处理及其对碳纤维复合材料层合强度影响的研究","authors":"H. Sukanto, W. W. Raharjo, D. Ariawan, J. Triyono","doi":"10.1515/jmbm-2022-0266","DOIUrl":null,"url":null,"abstract":"Abstract Thermosetting epoxy resin polymer with cycloaliphatic amines curing agent has been widely used for a composite matrix with carbon fiber reinforcement. The utilization was increased due to the superior performance of this epoxy resin compared to other polymers. However, a changing operational environment has potentially reduced composite performance, which most likely begins with matrix degradation. This research applies thermal treatment by the quenching process sequence to the epoxy resin matrix and its reinforced carbon fiber composite (CFRP). The composite is made by epoxy resin diglycidyl ether bisphenol-A, curing with cycloaliphatic amine as matrix and strengthening carbon fiber mat/woven. Three times quenching treatment was performed by heating the specimen around the glass transition temperature and then dipped immediately in fresh water. After quenching treatment, the epoxy resin shows a reduction in tensile strength and elongation. Under infrared observation, epoxy resin does not significantly show changes in functional groups. Investigation under X-ray refraction also indicates no difference in a crystalline structure; this epoxy resin stays in an amorphous form before and after quenching. In contrast to the matrix, the quenching treatment of the CFRP composite above the epoxy resin s glass transition temperature revealed an increase in the interlaminar shear strength (ILSS). The matrix ductility reduction after quenching should be carefully considered for application in the form of epoxy resin sheets or CFRP composite construction materials.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of cycloaliphatic amine-cured bisphenol-A epoxy resin under quenching treatment and the effect on its carbon fiber composite lamination strength\",\"authors\":\"H. Sukanto, W. W. Raharjo, D. Ariawan, J. Triyono\",\"doi\":\"10.1515/jmbm-2022-0266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Thermosetting epoxy resin polymer with cycloaliphatic amines curing agent has been widely used for a composite matrix with carbon fiber reinforcement. The utilization was increased due to the superior performance of this epoxy resin compared to other polymers. However, a changing operational environment has potentially reduced composite performance, which most likely begins with matrix degradation. This research applies thermal treatment by the quenching process sequence to the epoxy resin matrix and its reinforced carbon fiber composite (CFRP). The composite is made by epoxy resin diglycidyl ether bisphenol-A, curing with cycloaliphatic amine as matrix and strengthening carbon fiber mat/woven. Three times quenching treatment was performed by heating the specimen around the glass transition temperature and then dipped immediately in fresh water. After quenching treatment, the epoxy resin shows a reduction in tensile strength and elongation. Under infrared observation, epoxy resin does not significantly show changes in functional groups. Investigation under X-ray refraction also indicates no difference in a crystalline structure; this epoxy resin stays in an amorphous form before and after quenching. In contrast to the matrix, the quenching treatment of the CFRP composite above the epoxy resin s glass transition temperature revealed an increase in the interlaminar shear strength (ILSS). The matrix ductility reduction after quenching should be carefully considered for application in the form of epoxy resin sheets or CFRP composite construction materials.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of cycloaliphatic amine-cured bisphenol-A epoxy resin under quenching treatment and the effect on its carbon fiber composite lamination strength
Abstract Thermosetting epoxy resin polymer with cycloaliphatic amines curing agent has been widely used for a composite matrix with carbon fiber reinforcement. The utilization was increased due to the superior performance of this epoxy resin compared to other polymers. However, a changing operational environment has potentially reduced composite performance, which most likely begins with matrix degradation. This research applies thermal treatment by the quenching process sequence to the epoxy resin matrix and its reinforced carbon fiber composite (CFRP). The composite is made by epoxy resin diglycidyl ether bisphenol-A, curing with cycloaliphatic amine as matrix and strengthening carbon fiber mat/woven. Three times quenching treatment was performed by heating the specimen around the glass transition temperature and then dipped immediately in fresh water. After quenching treatment, the epoxy resin shows a reduction in tensile strength and elongation. Under infrared observation, epoxy resin does not significantly show changes in functional groups. Investigation under X-ray refraction also indicates no difference in a crystalline structure; this epoxy resin stays in an amorphous form before and after quenching. In contrast to the matrix, the quenching treatment of the CFRP composite above the epoxy resin s glass transition temperature revealed an increase in the interlaminar shear strength (ILSS). The matrix ductility reduction after quenching should be carefully considered for application in the form of epoxy resin sheets or CFRP composite construction materials.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.