E. Burakowski, A. Contosta, D. Grogan, S. Nelson, S. Garlick, N. Casson
{"title":"北美东北部冬季的未来:气候指标描绘了将影响生态系统和社区的变暖和雪损失","authors":"E. Burakowski, A. Contosta, D. Grogan, S. Nelson, S. Garlick, N. Casson","doi":"10.1656/045.028.s1112","DOIUrl":null,"url":null,"abstract":"- Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snow-packs become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to <1 month under the warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range north-ward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies.","PeriodicalId":49742,"journal":{"name":"Northeastern Naturalist","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Future of Winter in Northeastern North America: Climate Indicators Portray Warming and Snow Loss That Will Impact Ecosystems and Communities\",\"authors\":\"E. Burakowski, A. Contosta, D. Grogan, S. Nelson, S. Garlick, N. Casson\",\"doi\":\"10.1656/045.028.s1112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snow-packs become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to <1 month under the warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range north-ward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies.\",\"PeriodicalId\":49742,\"journal\":{\"name\":\"Northeastern Naturalist\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Northeastern Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1656/045.028.s1112\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Northeastern Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1656/045.028.s1112","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Future of Winter in Northeastern North America: Climate Indicators Portray Warming and Snow Loss That Will Impact Ecosystems and Communities
- Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snow-packs become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to <1 month under the warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range north-ward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies.
期刊介绍:
The Northeastern Naturalist covers all aspects of the natural history sciences of terrestrial, freshwater, and marine organisms and the environments of the northeastern portion of North America, roughly bounded from Virginia to Missouri, north to Minnesota and Nunavut, east to Newfoundland, and south back to Virginia. Manuscripts based on field studies outside of this region that provide information on species within this region may be considered at the Editor’s discretion.
The journal welcomes manuscripts based on observations and research focused on the biology of terrestrial, freshwater, and marine organisms and communities as it relates to their life histories and their function within, use of, and adaptation to the environment and the habitats in which they are found, as well as on the ecology and conservation of species and habitats. Such studies may encompass measurements, surveys, and/or experiments in the field, under lab conditions, or utilizing museum and herbarium specimens. Subject areas include, but are not limited to, anatomy, behavior, biogeography, biology, conservation, evolution, ecology, genetics, parasitology, physiology, population biology, and taxonomy. Strict lab, modeling, and simulation studies on natural history aspects of the region, without any field component, will be considered for publication as long as the research has direct and clear significance to field naturalists and the manuscript discusses these implications.