带有惩罚的k-means问题的改进原对偶逼近算法

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Chunying Ren, Dachuan Xu, D. Du, Min Li
{"title":"带有惩罚的k-means问题的改进原对偶逼近算法","authors":"Chunying Ren, Dachuan Xu, D. Du, Min Li","doi":"10.1017/S0960129521000104","DOIUrl":null,"url":null,"abstract":"Abstract In the k-means problem with penalties, we are given a data set $${\\cal D} \\subseteq \\mathbb{R}^\\ell $$ of n points where each point $$j \\in {\\cal D}$$ is associated with a penalty cost pj and an integer k. The goal is to choose a set $${\\rm{C}}S \\subseteq {{\\cal R}^\\ell }$$ with |CS| ≤ k and a penalized subset $${{\\cal D}_p} \\subseteq {\\cal D}$$ to minimize the sum of the total squared distance from the points in D / Dp to CS and the total penalty cost of points in Dp, namely $$\\sum\\nolimits_{j \\in {\\cal D}\\backslash {{\\cal D}_p}} {d^2}(j,{\\rm{C}}S) + \\sum\\nolimits_{j \\in {{\\cal D}_p}} {p_j}$$. We employ the primal-dual technique to give a pseudo-polynomial time algorithm with an approximation ratio of (6.357+ε) for the k-means problem with penalties, improving the previous best approximation ratio 19.849+∊ for this problem given by Feng et al. in Proceedings of FAW (2019).","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"32 1","pages":"151 - 163"},"PeriodicalIF":0.4000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved primal-dual approximation algorithm for the k-means problem with penalties\",\"authors\":\"Chunying Ren, Dachuan Xu, D. Du, Min Li\",\"doi\":\"10.1017/S0960129521000104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the k-means problem with penalties, we are given a data set $${\\\\cal D} \\\\subseteq \\\\mathbb{R}^\\\\ell $$ of n points where each point $$j \\\\in {\\\\cal D}$$ is associated with a penalty cost pj and an integer k. The goal is to choose a set $${\\\\rm{C}}S \\\\subseteq {{\\\\cal R}^\\\\ell }$$ with |CS| ≤ k and a penalized subset $${{\\\\cal D}_p} \\\\subseteq {\\\\cal D}$$ to minimize the sum of the total squared distance from the points in D / Dp to CS and the total penalty cost of points in Dp, namely $$\\\\sum\\\\nolimits_{j \\\\in {\\\\cal D}\\\\backslash {{\\\\cal D}_p}} {d^2}(j,{\\\\rm{C}}S) + \\\\sum\\\\nolimits_{j \\\\in {{\\\\cal D}_p}} {p_j}$$. We employ the primal-dual technique to give a pseudo-polynomial time algorithm with an approximation ratio of (6.357+ε) for the k-means problem with penalties, improving the previous best approximation ratio 19.849+∊ for this problem given by Feng et al. in Proceedings of FAW (2019).\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"32 1\",\"pages\":\"151 - 163\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0960129521000104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129521000104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在带有惩罚的k-means问题中,我们给定一个包含n个点的数据集$${\cal D} \subseteq \mathbb{R}^\ell $$,其中每个点$$j \in {\cal D}$$与一个惩罚代价pj和一个整数k相关联。我们的目标是选择一个集$${\rm{C}}S \subseteq {{\cal R}^\ell }$$,其中|CS|≤k和一个惩罚子集$${{\cal D}_p} \subseteq {\cal D}$$,以最小化D / Dp中点到CS的总平方距离和Dp中点的总惩罚代价$$\sum\nolimits_{j \in {\cal D}\backslash {{\cal D}_p}} {d^2}(j,{\rm{C}}S) + \sum\nolimits_{j \in {{\cal D}_p}} {p_j}$$。我们采用原始对偶技术,对带有惩罚的k-means问题给出了近似比为(6.357+ε)的伪多项式时间算法,改进了之前由Feng等人在《中国汽车工程学报》(2019)中给出的该问题的最佳近似比为19.849+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved primal-dual approximation algorithm for the k-means problem with penalties
Abstract In the k-means problem with penalties, we are given a data set $${\cal D} \subseteq \mathbb{R}^\ell $$ of n points where each point $$j \in {\cal D}$$ is associated with a penalty cost pj and an integer k. The goal is to choose a set $${\rm{C}}S \subseteq {{\cal R}^\ell }$$ with |CS| ≤ k and a penalized subset $${{\cal D}_p} \subseteq {\cal D}$$ to minimize the sum of the total squared distance from the points in D / Dp to CS and the total penalty cost of points in Dp, namely $$\sum\nolimits_{j \in {\cal D}\backslash {{\cal D}_p}} {d^2}(j,{\rm{C}}S) + \sum\nolimits_{j \in {{\cal D}_p}} {p_j}$$. We employ the primal-dual technique to give a pseudo-polynomial time algorithm with an approximation ratio of (6.357+ε) for the k-means problem with penalties, improving the previous best approximation ratio 19.849+∊ for this problem given by Feng et al. in Proceedings of FAW (2019).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信