欧洲云杉I型断裂性能的测定

IF 0.9 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD
Marija Todorović, Mathieu Koetsier, Nađa Simović, Ivan Glišović, Marko Pavlovic
{"title":"欧洲云杉I型断裂性能的测定","authors":"Marija Todorović, Mathieu Koetsier, Nađa Simović, Ivan Glišović, Marko Pavlovic","doi":"10.37763/wr.1336-4561/68.2.334347","DOIUrl":null,"url":null,"abstract":"In this paper an efficient procedure for obtaining a cohesive law for Mode I timber fracture (crack opening), based on the Double Cantilever Beam (DCB) tests is given. DCB tests were performed on ten European spruce specimens in order to determine the energy release rate vs crack length (R curves). Two crucial parameters - crack length during the experiment and the crack tip opening displacement were obtained using 2D Digital Image Correlation (DIC) technique. In order to determine accurate fracture resistance (R curve), procedure which includes calculating cumulative released energy was employed. The cohesive law for Mode I fracture of wood was obtained by differentiation of the strain energy release rate as a function of the crack tip opening displacement. This cohesive law is further implemented in the successful numerical modelling of failure modes in large-scale end-notched glulam beams which were experimentally tested in four-point bending configuration.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DETERMINATION OF MODE I FRACTURE PROPERTIES OF EUROPEAN SPRUCE\",\"authors\":\"Marija Todorović, Mathieu Koetsier, Nađa Simović, Ivan Glišović, Marko Pavlovic\",\"doi\":\"10.37763/wr.1336-4561/68.2.334347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an efficient procedure for obtaining a cohesive law for Mode I timber fracture (crack opening), based on the Double Cantilever Beam (DCB) tests is given. DCB tests were performed on ten European spruce specimens in order to determine the energy release rate vs crack length (R curves). Two crucial parameters - crack length during the experiment and the crack tip opening displacement were obtained using 2D Digital Image Correlation (DIC) technique. In order to determine accurate fracture resistance (R curve), procedure which includes calculating cumulative released energy was employed. The cohesive law for Mode I fracture of wood was obtained by differentiation of the strain energy release rate as a function of the crack tip opening displacement. This cohesive law is further implemented in the successful numerical modelling of failure modes in large-scale end-notched glulam beams which were experimentally tested in four-point bending configuration.\",\"PeriodicalId\":23786,\"journal\":{\"name\":\"Wood Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37763/wr.1336-4561/68.2.334347\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/wr.1336-4561/68.2.334347","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种基于双悬臂梁(DCB)试验计算I型木材断裂(裂纹张开)内聚规律的有效方法。为了确定能量释放率与裂纹长度的关系(R曲线),对10个欧洲云杉试件进行了DCB试验。利用二维数字图像相关(DIC)技术获得了实验中裂纹长度和裂纹尖端张开位移两个关键参数。为了确定准确的断裂阻力(R曲线),采用了计算累积释放能量的方法。通过对应变能释放率随裂纹尖端张开位移的微分,得到了木材ⅰ型断裂的内聚规律。这一内聚规律在大型端缺口胶合木梁的破坏模式数值模拟中得到了进一步的应用,并在四点弯曲状态下进行了试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETERMINATION OF MODE I FRACTURE PROPERTIES OF EUROPEAN SPRUCE
In this paper an efficient procedure for obtaining a cohesive law for Mode I timber fracture (crack opening), based on the Double Cantilever Beam (DCB) tests is given. DCB tests were performed on ten European spruce specimens in order to determine the energy release rate vs crack length (R curves). Two crucial parameters - crack length during the experiment and the crack tip opening displacement were obtained using 2D Digital Image Correlation (DIC) technique. In order to determine accurate fracture resistance (R curve), procedure which includes calculating cumulative released energy was employed. The cohesive law for Mode I fracture of wood was obtained by differentiation of the strain energy release rate as a function of the crack tip opening displacement. This cohesive law is further implemented in the successful numerical modelling of failure modes in large-scale end-notched glulam beams which were experimentally tested in four-point bending configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Research
Wood Research 工程技术-材料科学:纸与木材
CiteScore
2.40
自引率
15.40%
发文量
81
审稿时长
5.4 months
期刊介绍: Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信