{"title":"打开黑盒子:使用深度学习预测和解释YouTube收视率","authors":"Jiaheng Xie, Yidong Chai, Xinyu Liu","doi":"10.1080/07421222.2023.2196780","DOIUrl":null,"url":null,"abstract":"ABSTRACT As video-sharing sites emerge as a critical part of the social media landscape, video viewership prediction becomes essential for content creators and businesses to optimize influence and marketing outreach with minimum budgets. Although deep learning champions viewership prediction, it lacks interpretability, which is required by regulators and is fundamental to the prioritization of the video production process and promoting trust in algorithms. Existing interpretable predictive models face the challenges of imprecise interpretation and negligence of unstructured data. Following the design-science paradigm, we propose a novel Precise Wide-and-Deep Learning (PrecWD) to accurately predict viewership with unstructured video data and well-established features while precisely interpreting feature effects. PrecWD’s prediction outperforms benchmarks in two case studies and achieves superior interpretability in two user studies. We contribute to IS knowledge base by enabling precise interpretability in video-based predictive analytics and contribute nascent design theory with generalizable model design principles. Our system is deployable to improve video-based social media presence.","PeriodicalId":50154,"journal":{"name":"Journal of Management Information Systems","volume":"40 1","pages":"541 - 579"},"PeriodicalIF":5.9000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unbox the Black-Box: Predict and Interpret YouTube Viewership Using Deep Learning\",\"authors\":\"Jiaheng Xie, Yidong Chai, Xinyu Liu\",\"doi\":\"10.1080/07421222.2023.2196780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT As video-sharing sites emerge as a critical part of the social media landscape, video viewership prediction becomes essential for content creators and businesses to optimize influence and marketing outreach with minimum budgets. Although deep learning champions viewership prediction, it lacks interpretability, which is required by regulators and is fundamental to the prioritization of the video production process and promoting trust in algorithms. Existing interpretable predictive models face the challenges of imprecise interpretation and negligence of unstructured data. Following the design-science paradigm, we propose a novel Precise Wide-and-Deep Learning (PrecWD) to accurately predict viewership with unstructured video data and well-established features while precisely interpreting feature effects. PrecWD’s prediction outperforms benchmarks in two case studies and achieves superior interpretability in two user studies. We contribute to IS knowledge base by enabling precise interpretability in video-based predictive analytics and contribute nascent design theory with generalizable model design principles. Our system is deployable to improve video-based social media presence.\",\"PeriodicalId\":50154,\"journal\":{\"name\":\"Journal of Management Information Systems\",\"volume\":\"40 1\",\"pages\":\"541 - 579\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Management Information Systems\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1080/07421222.2023.2196780\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Information Systems","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1080/07421222.2023.2196780","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Unbox the Black-Box: Predict and Interpret YouTube Viewership Using Deep Learning
ABSTRACT As video-sharing sites emerge as a critical part of the social media landscape, video viewership prediction becomes essential for content creators and businesses to optimize influence and marketing outreach with minimum budgets. Although deep learning champions viewership prediction, it lacks interpretability, which is required by regulators and is fundamental to the prioritization of the video production process and promoting trust in algorithms. Existing interpretable predictive models face the challenges of imprecise interpretation and negligence of unstructured data. Following the design-science paradigm, we propose a novel Precise Wide-and-Deep Learning (PrecWD) to accurately predict viewership with unstructured video data and well-established features while precisely interpreting feature effects. PrecWD’s prediction outperforms benchmarks in two case studies and achieves superior interpretability in two user studies. We contribute to IS knowledge base by enabling precise interpretability in video-based predictive analytics and contribute nascent design theory with generalizable model design principles. Our system is deployable to improve video-based social media presence.
期刊介绍:
Journal of Management Information Systems is a widely recognized forum for the presentation of research that advances the practice and understanding of organizational information systems. It serves those investigating new modes of information delivery and the changing landscape of information policy making, as well as practitioners and executives managing the information resource.