归一化米勒-罗斯函数及其几何性质

IF 0.8 4区 数学 Q2 MATHEMATICS
K. Mehrez
{"title":"归一化米勒-罗斯函数及其几何性质","authors":"K. Mehrez","doi":"10.55730/1300-0098.3388","DOIUrl":null,"url":null,"abstract":": The main objective of this paper is to study certain geometric properties (like univalence, starlikeness, convexity, close-to-convexity) for the normalized Miller-Ross function. The various results, which we have established in the present investigation, are believed to be new, and their importance is illustrated by several interesting consequences and examples. Furthermore, some of the main results improve the corresponding results available in the literature [15]","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The normalized Miller-Ross function and its geometric properties\",\"authors\":\"K. Mehrez\",\"doi\":\"10.55730/1300-0098.3388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The main objective of this paper is to study certain geometric properties (like univalence, starlikeness, convexity, close-to-convexity) for the normalized Miller-Ross function. The various results, which we have established in the present investigation, are believed to be new, and their importance is illustrated by several interesting consequences and examples. Furthermore, some of the main results improve the corresponding results available in the literature [15]\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3388\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3388","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究归一化Miller-Ross函数的某些几何性质(如单价、星形性、凸性、接近凸性)。我们在本次调查中确定的各种结果被认为是新的,几个有趣的结果和例子说明了它们的重要性。此外,一些主要结果改进了文献[15]中的相应结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The normalized Miller-Ross function and its geometric properties
: The main objective of this paper is to study certain geometric properties (like univalence, starlikeness, convexity, close-to-convexity) for the normalized Miller-Ross function. The various results, which we have established in the present investigation, are believed to be new, and their importance is illustrated by several interesting consequences and examples. Furthermore, some of the main results improve the corresponding results available in the literature [15]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信