通过对两个结的二重进行管道运算得到的结的3环多项式

IF 0.6 4区 数学 Q3 MATHEMATICS
Kouki Yamaguchi
{"title":"通过对两个结的二重进行管道运算得到的结的3环多项式","authors":"Kouki Yamaguchi","doi":"10.1142/s0129167x23500866","DOIUrl":null,"url":null,"abstract":"The 3-loop polynomial of a knot is a polynomial presenting the 3-loop part of the Kontsevich invariant of knots. In this paper, we calculate the 3-loop polynomial of knots obtained by plumbing the doubles of two knots; this class of knots includes untwisted Whitehead doubles. We construct the 3-loop polynomial by calculating the rational version of the Aarhus integral of a surgery presentation. As a consequence, we obtain an explicit presentation of the 3-loop polynomial for the knots.","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 3-loop polynomial of knots obtained by plumbing the doubles of two knots\",\"authors\":\"Kouki Yamaguchi\",\"doi\":\"10.1142/s0129167x23500866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 3-loop polynomial of a knot is a polynomial presenting the 3-loop part of the Kontsevich invariant of knots. In this paper, we calculate the 3-loop polynomial of knots obtained by plumbing the doubles of two knots; this class of knots includes untwisted Whitehead doubles. We construct the 3-loop polynomial by calculating the rational version of the Aarhus integral of a surgery presentation. As a consequence, we obtain an explicit presentation of the 3-loop polynomial for the knots.\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x23500866\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x23500866","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

结的3环多项式是表示结的Kontsevich不变量的3环部分的多项式。在本文中,我们计算了通过对两个结的二重进行管道化而得到的结的三环多项式;这类绳结包括无捻怀特黑德双结。我们通过计算手术演示的奥胡斯积分的有理版本来构造3环多项式。因此,我们得到了结的3环多项式的显式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 3-loop polynomial of knots obtained by plumbing the doubles of two knots
The 3-loop polynomial of a knot is a polynomial presenting the 3-loop part of the Kontsevich invariant of knots. In this paper, we calculate the 3-loop polynomial of knots obtained by plumbing the doubles of two knots; this class of knots includes untwisted Whitehead doubles. We construct the 3-loop polynomial by calculating the rational version of the Aarhus integral of a surgery presentation. As a consequence, we obtain an explicit presentation of the 3-loop polynomial for the knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信