{"title":"关于De Koninck的一个问题","authors":"Tomohiro Yamada","doi":"10.2140/moscow.2021.10.249","DOIUrl":null,"url":null,"abstract":"Let $\\sigma(n)$ and $\\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of $n$ respectively. We shall show that, if $n\\neq 1, 1782$ and $\\sigma(n)=(\\gamma(n))^2$, then there exist odd (not necessarily distinct) primes $p, p^\\prime$ and (not necessarily odd) distinct primes $q_i (i=1, 2, \\ldots, k)$ such that $p, p^\\prime\\mid\\mid n$, $q_i^2\\mid\\mid n (i=1, 2, \\ldots, k)$ and $q_1\\mid \\sigma(p^2), q_{i+1}\\mid\\sigma(q_i^2) (i=1, 2, \\ldots, k-1), p^\\prime \\mid\\sigma(q_k^2)$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a problem of De Koninck\",\"authors\":\"Tomohiro Yamada\",\"doi\":\"10.2140/moscow.2021.10.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\sigma(n)$ and $\\\\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of $n$ respectively. We shall show that, if $n\\\\neq 1, 1782$ and $\\\\sigma(n)=(\\\\gamma(n))^2$, then there exist odd (not necessarily distinct) primes $p, p^\\\\prime$ and (not necessarily odd) distinct primes $q_i (i=1, 2, \\\\ldots, k)$ such that $p, p^\\\\prime\\\\mid\\\\mid n$, $q_i^2\\\\mid\\\\mid n (i=1, 2, \\\\ldots, k)$ and $q_1\\\\mid \\\\sigma(p^2), q_{i+1}\\\\mid\\\\sigma(q_i^2) (i=1, 2, \\\\ldots, k-1), p^\\\\prime \\\\mid\\\\sigma(q_k^2)$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of $n$ respectively. We shall show that, if $n\neq 1, 1782$ and $\sigma(n)=(\gamma(n))^2$, then there exist odd (not necessarily distinct) primes $p, p^\prime$ and (not necessarily odd) distinct primes $q_i (i=1, 2, \ldots, k)$ such that $p, p^\prime\mid\mid n$, $q_i^2\mid\mid n (i=1, 2, \ldots, k)$ and $q_1\mid \sigma(p^2), q_{i+1}\mid\sigma(q_i^2) (i=1, 2, \ldots, k-1), p^\prime \mid\sigma(q_k^2)$.